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ABSTRACT
While GPU query processing is a well-studied area, real adop-
tion is limited in practice as typically GPU execution is only
significantly faster than CPU execution if the data resides in
GPU memory, which limits scalability to small data scenarios
where performance tends to be less critical. Another problem
is that not all query code (e.g. UDFs) will realistically be
able to run on GPUs. We therefore investigate CPU-GPU
co-processing, where both the CPU and GPU are involved in
evaluating the query in scenarios where the data does not fit
in the GPU memory.

As we wish to deeply explore opportunities for optimizing
execution speed, we narrow our focus further to a specific
well-studied OLAP scenario, amenable to such co-processing,
in the form of the TPC-H benchmark Query 1.

For this query, and at large scale factors, we are able to im-
prove performance significantly over the state–of–the–art for
GPU implementations; we present competitive performance
of a GPU versus a state–of–the–art multi-core CPU baseline
a novelty for data exceeding GPU memory size; and finally,
we show that co-processing does provide significant additional
speedup over any of the processors individually.

We achieve this performance improvement by utilizing
parallelism-friendly compression to alleviate the PCIe transfer
bottleneck, query-compilation-like fusion of the processing
operations, and a simple yet effective scheduling mechanism.
We hope that some of these features can inspire future work
on GPU-focused and heterogeneous analytic DBMSes.

∗Work supported by the Netherlands Organization for Sci-
entific Research (NWO), project “Process mining for multi-
objective online control”

1. INTRODUCTION
General purpose computing on the Graphics Processing Unit

(GPU) has become very popular in the past decade. Owing
to the massively parallel architecture and the high memory
bandwidth of both server-grade and consumer-grade GPUs,
they can significantly outperform general-purpose CPUs on
many tasks. GPUs have been effectively used to speed up many
computation-intensive applications in the fields of scientific
simulation, machine learning and data mining [21].

A significant body of work exists on exploiting GPUs to
speed up analytic database query processing as well (see [8]).
However, database workloads are often less compute-intensive
and more data-intensive, and also require quite diverse com-
putation. GPU database systems have mainly been limited
to research and have not been adopted in practice. There
are two main technical problems that stand in the way: (1)
available GPU memory is very small (at most 24GB, whereas
main memories can be TBs) compared to the large data sets
in use today and transfer from main memory to GPU memory
is slow, and (2) GPUs are limited in what operations they can
perform efficiently compared to the much more flexible and
generic CPU. For example, because each multiprocessor only
has a single instruction decoder, all threads in a block have to
execute the same instruction at the same time. As a result,
algorithms that involve modestly complex control flow are not
as efficient on a GPU as they are on a CPU – this includes
for instance operations on variable-length strings. Given the
importance of string processing in workloads [29], but also the
use of UDFs and libraries written in CPU code, GPU-only
database systems have little traction in practice, especially
when their performance edge only surfaces when it is least
needed: while processing small datasets that can be cached
in GPU memory. Yet another problem are scheduling restric-
tions on GPUs that make concurrent execution of different
queries on one CPU quite hard.

While a lot of GPU database processing research papers
show order-of-magnitude performance gains when executing
specific database operations inside the GPU, these results are
obtained only when the input data is already resident in GPU
Global memory [13]. Another issue often found in these work
is that they compare a highly optimized implementation of
the task at hand on the GPU to a straightforward baseline
implementation on the CPU [13]. For many of these algorithms
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the performance improvements tend to disappear when the
cost of transferring the data over the PCIe bus is taken into
account and when they would be compared against high-end
CPU-based system such as e.g. Hyper. Finally, none of the
GPU research systems supports the concurrent execution of
different queries, while the ability to do so is required in most
database workloads.

For these reasons, we focus on CPU-GPU co-processing,
rather than GPU-only processing. Co-processing systems
should ideally never be slower than a CPU-only system, be-
cause they can always choose to only execute on the CPU.
The decision whether and how to use the GPU to perform
operations, should be made automatically by such systems.
However, such decisions are difficult to make a priori as these
decision depends on many different factors, such as where the
intermediate data resides and various characteristics of the
input data, the size of intermediate structures [7], and the
operations to be performed. Instead a dynamic approach that
switches between which processor to use as the data is pro-
cessed is desirable. The currently used processor could even be
changed during the computation of an operation. For example
when intermediates are too big for GPU main memory, the
query engine can switch to using the CPU.

Further, we think that GPUs can only become useful in
database processing if the state-of-the-art is improved in vari-
ous dimensions. First is the deployment of GPU-friendly data
compression methods to alleviate the PCIe transfer bottleneck,
and to be able to fit more data in GPU memory. Second is
compilation of (sub-)queries into custom GPU kernels that
fuse together non-blocking relational operators as well as de-
compression. In addition more advances are needed in query
processing methods, for instance for aggregation. Finally,
we think co-processing systems need to develop intelligent
division-of-work strategies between CPU and GPU that maxi-
mize the strength of each device and leaves work that involves
its weaknesses to the other device.

The over-arching research question motivating our work is:
what should CPU-GPU co-processing database architecture
look like? In this paper, we make one small step into that
direction by limiting the question to one well-known OLAP
scenario, namely TPC-H Query 1 (Q1), which involves scan,
selection, projection (expression calculation) and aggregation.
We investigate how we can use a GPU to process this query,
and what different implementation choices can be made along
the way. We compare against our previous work on highly-
optimized CPU implementations for this same scenario [15],
to obtain an ambitious CPU baseline. All of the source code
we have used for our experiments is publically available [25].

Contributions. The main contributions of this paper are as
follows.

• We review current GPU-accelerated DBMSs and the re-
lated work that has been done on efficient group-by and
aggregations on GPU.
• We explore the design space of efficient grouping and ag-

gregation on compressed data on a GPU, and the division
of work between CPU and GPU. For each aspect, we dis-
cuss the trade-offs that can be made and the performance
benefits or drawbacks resulting from the decisions made.
• We perform an extensive performance evaluation which

allows us to conclude that CPU-GPU co-processing can
make significant performance gains, even given the relatively
adverse characteristics of database workloads.

SELECT
l_returnflag ,
l_linestatus ,
SUM(l_quantity),
SUM(l_extendedprice),
SUM(l_extendedprice * (1 - l_discount)),
SUM(l_extendedprice * (1 - l_discount) *

(1 + l_tax)),
AVG(l_quantity),
AVG(l_extendedprice),
AVG(l_discount),
COUNT (*)

FROM
lineitem

WHERE
l_shipdate <= date '1998 -09 -02'

GROUP BY
l_returnflag , l_linestatus

ORDER BY
l_returnflag , l_linestatus;

Listing 1: TPC-H Query 1 (with DELTA=90)

Outline. The remainder of this paper is organized as follows.
In Section 2 we describe the architecture of GPUs and briefly
discuss execution models for processing queries using them. In
Section 3 we discuss the design space for processing TPC-H Q1-
like group-by aggregation queries on the GPU, for using a CPU
and aGPU together, co-processing the query. Experiments
with points in this design space are described and discussed
in Section 4. In Section 5 we discuss some related work,
on the kind of GPU computation necessary for this query
and the performance of more general GPU-utilizing query
processors on TPC-H Q1. We conclude in Section 6, with a
brief description of potential future work.

2. BACKGROUND
The architecture of a modern computer with a CPU and

GPU as co-processor is depicted in Figure 1. The host system
contains the CPU which is directly connected to the DRAM.
The device system contains the GPU, and is connected to
the host system through the PCIe bus. Any data that is
transferred from the host system to the device system has to
be transferred over the PCIe bus. The GPU itself is formed by
a set of SMs that packages several scalar processors, an on-chip
Shared memory, caches and a connector to the GPU Global
memory. In the SM level, multiple threads are physically
located in an execution unit called a warp. Every warp is
accompanied by a single instruction decoder. In each cycle, the
warp scheduler fetches instructions and executes instructions
on all the threads located inside that warp, resulting in highly
concurrent execution.

GPU Global Memory. The global memory has typically
used DRAM modules, but with much better overall bandwidth
than main system memory. Access to Global memory is paged,
with a TLB being used. Access is also cached, in two levels:
An L2 cache coherent across cores, and an L1 cache which is
not kept coherent, unlike on a CPU. Also unlike a CPU, cache
line lengths are 32B for L2 and 128B for L1; and the L1 cache
is bypassed more often in accesses than on the CPU.

Shared Memory. Each stream multiprocessor has a dedi-
cated region of high-bandwidth and low-latency shared mem-
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Figure 1: Architectures of a Host and a Device System with different placements for the Hash table

ory which is physically located together with the L1 cache.
When running a kernel, the shared memory can be used to
load and store data from global memory that will be accessed
multiple times to reduce the amount of global memory ac-
cesses. The shared memory throughput is driven by two main
factors: the amount of active warps per SM and the ILP [20].

3. DESIGN SPACE
In this section, we explore the design space of an optimized

GPU implementation for grouping and aggregation. In par-
ticular, we focus our efforts on creating an optimized version
of Query 1 of the well known TPC-H Benchmark [28]. This
query is shown in Listing 1. We discuss the different imple-
mentation strategies that can be used implement group-by
and aggregation on the GPU, and discuss how these strategies
can be applied in the context of Q1. Our work intends to
explore this design space using manually coded kernels, in
order to identify opportunities and limitations. The final goal
is to inform future CPU+GPU database architecture that
will generate such kernels, which fuse operator pipelines and
decompressing scans with Just-In-Time query compilation.
Such compilation techniques are out of scope for this paper.

3.1 Compression
As mentioned earlier, a major hurdle for GPU effectiveness

in query processing is its “underprivileged” access to data
in main memory: It must receive all of its data at a third or
quarter of the bandwidth at which data is available to the
CPU. In absolute terms the figure is also underwhelming:
Around 12 GB/sec in practice. Thus, the better optimized
one can make the computation work on the GPU itself, the
more it approaches the point at which the kernels’ demand
for unprocessed data saturates the bus.

Compression in analytic query processing has been relatively
well studied; it is utilized in many modern columnar DBMSs
to improve memory bandwidth and operate on compressed
data [1]. As regarding GPU use, i.e. on-GPU decompression,
only some initial exploration of this subject has been done so

far, including [10] and the more recent [24, 23]. We follow the
approach of these papers, adopting a fully-columnar layout
for the compressed data, rather than defining a complex block
format, with internal pointers, markers and so on. As a
consequence of this design choice are that:

• Fundamentally, there is no difference between uncompressed
and compressed data layout — in both cases, these are sets
of (named) plain columns, each of a uniform width and type
throughput, whose interpretation is part of the execution
plan.
• Instead of breaking up compressed (or uncompressed) columns

into chunks or blocks from the outset, a work scheduler has
the flexibility to cut up the columns as it sees fit, to be
scheduled for execution, provided the cutting-up matches
for the different columns. (The latter condition is trivial for
TPC-H Q1, less so in general).

As for the choice of compression schemes and techniques
— many different techniques exist both for compressing data
and for operating on compressed data; and some have been
adapted or developed for GPU-targeted use, in the more
strictly-columnar layout discussed above [24]. However, the
TPC-H benchmark data which Q1 takes as input is not only
artificially-generated, but also rather uncompressible: Other
than some deterministic formulae, it uses uniform indepen-
dent samples for the relevant domains. Real-life data exhibits
many correlations between columns and within columns, and
a measure of locality (i.e. the effective domain in small con-
secutive sequences of elements is typically much lower than
the overall column’s domain) — and this motivates the more
involved compression schemes. We have none of that — nor
even do we have “noise”, invalid data or NULLs to consider. We
therefore confine ourselves to, first, potentially using Frame-
of-Reference (storing offsets from a base value) or Dictionary
compression, then applying Null Suppression (discarding un-
used bits).

An additional consideration we need to make is for the cost
in terms of effective read throughput. For example, if one can
compress a 32-bit value using 30 bits — this is typically not
worth the effort: It requires reading more locations in memory
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Column SQL Type
Uncompressed
Size (bits)

Method
Compressed
Size (bits)

Optimum
Compressed
Size (bits)

l_quantity INTEGER 32 Null-Suppression 8 6
l_extendedprice DECIMAL(15,2) 64 Null-Suppression 32 21
l_discount DECIMAL(15,2) 64 Null-Suppression 8 4
l_tax DECIMAL(15,2) 64 Null-Suppression 8 4
l_shipdate DATE 32 Frame-of-Reference + NS 16 12
l_returnflag VARCHAR(1) 8 Dictionary 2 2
l_linestatus VARCHAR(1) 8 Dictionary 1 1
Total per Tuple (as bytes) 272 75 50

Table 1: Compression schemes for the columns in lineitem used in TPC-H Query 1

for obtaining a single value; and shifting and combining bits
from consecutive reads; this is even less convenient on GPUs
as all memory accesses must be properly aligned (e.g. the
4-byte value cannot be read from an address with low bits 10).

Our choices for compression under the above considerations
appear in Table 1. Note that the sub-optimality is 9% of
the original tuple width, but 25% of the optimum width (the
optimum assumes an integral number of bits per value).

3.2 Hashing vs. sorting
There are two common fundamental approaches to perform-

ing a grouping operation: (1) Use of hash functions on group
keys and (2) Sorting data, by order of the group keys [18].
With the hash-based grouping, a hash table is constructed, the
indices into which are obtained by applying a hash function
to the group keys (in the SQL context: GROUP BY columns).
This includes the special case of “non-hashing”, i.e. use of an
identity or something similarly trivial as the hash function (see
below in Subsection 3.3). For a group-by-aggregation query,
the hash table entries contain the aggregates, updated as the
input table is scanned: The processing of a tuple involves
computing its hash, looking up the hash table entry (within
one or more tables), and updating the aggregate with the
tuple’s data.

Sort-based grouping, on the other hand, is executed by first
sorting the data along with the keys, by order of the keys,
then scanning the sorted data and reducing/aggregating the
sequences with identical group keys.

A methodical comparison of these methods is performed
in Karnagel et al. [17]. The hash-based implementations
performs better in all circumstances for lower numbers of
groups, and when the grouping is carried out in a pipelined
fashion, outpeforms sort-based implementations on larger
numbers of groups as well. The sort-based grouping is only
worth it if (1) the entire dataset fits in the GPU memory and
is processed all at once, and (2) the amount of groups is very
high. The scenario of grouping smaller amounts of data into
larger numbers of groups is not very common. This confirms
our intuitive predisposition to focus on a hash-table-based
implementation, particularly for TPC-H Q1.

3.3 Hash Table Design
Collision Resolution. The main issue when dealing with
hash table design on the GPU is that of collisions — identical
hash values for different group key inputs to the chosen hash
function. When two groups share the same hash value, this
collision has to be resolved in some way, as they may not
be aggregated together. Common approaches to resolving
collisions — chaining, probing and cuckoo hashing — suffer
from the inherent problem of introducing data-dependent

branching: When a collision occurs, the collision has to be
resolved by either following a chain to find a free position; by
continued probing of subsequent table cells, or by re-applying
a hashing function. Each of these has worst-case complexity
linear in the size of the hash table, despite the amortized
constant-time complexity is O(1). In practical terms, even a
few such data-dependent branches are highly disruptive on
the GPU: When even a single thread in a warp takes a branch,
all other warp threads follow its execution path, despite if
themselves only waiting to take the other branch; and the
branching thread then waits for the rest to take their own path.
Further discussion of using collision resolution techniques in a
GPU hash table implementation is discussed in [4].

Collision Avoidance. Instead of resolving collisions as they
occur, one may invest effort in avoiding them altogether —
by obtaining a hash function which is guaranteed to be an
injective function for the input data [5]. This ensures no
divergent branching is necessary during execution and allows
us to use a simpler hash table layout.

There are several methods for obtaining a perfect hash
function. The simplest is to use the identity function as the
hash. In this case, the hash table size must span the entire
domain of the group keys. This is only possible for small-
domain data types. For larger-domain types, if the group
keys are known to be losslessly compressible, one may use
an enumeration of the compressed form as the hash key, or
alternatively an enumeration of a superset of the comrpessed
form. Specifically, if the group keys are known to fit into a small
contiguous range, [min,max], the hash can be a computation
of the offset from min, with a hash table size of |max−min|.

For a small set of group keys, and when preprocessing is
not available to obtain an enumeration, a perfect hash might
still be feasible if each extant group is sufficiently frequent in
the column. In such cases, a uniform sample of group keys
is likely to yield the entire set; and given this set, a perfect
hash function can be obtained with high probability when
sampling from a universal family of hash functions. This is
first described in the context of hash tables in [11], or using
the easier-to-compute family discussed in [9].

Without knowledge of the frequency distribution of group
keys, one cannot realize whether the above is indeed the case.
A possible approach is to assume optimistically that it is,
and upon encountering a collision, to fall re-generate another,
perfect, hash function or to fall back to a collision-resolution-
based method.

If the set of group keys is large, searching for a perfect hash
function is not worthwhile relative to the overhead of collision
resolution.

Our case in focus, TPC-H Q1, admits a straightforward
perfect hash: Despite grouping by two distinct columns, which
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usually implies a large set of group keys (the cartesian product
of two sets), the l_returnflag and l_linestatus columns
of the lineitem table only contain 3 and 2 distinct values
respectively. Dictionary compression of each of the columns
can be combined to obtain this enumeration, as was done
in [2]. The column ranges are ’F’..’O’ and ’A’..’R’ respec-
tively, for a combined range size 17 · 9 = 153; a hash table
of this size will therefore suffice to map pairs of values to an
index without enumeration, i.e. on-the-fly, with no need for
preprocessing/compression.

3.4 Hash Table Placement
Hash tables can be placed in one of several spaces of within

the physical hierarchy of GPU memory: Global device memory
(possibly with caching); “Shared Memory” on a single comput-
ing core (and common to all threads of a grid block executing
on that core); or a core’s register file (to which access is thread-
specific); and they can even be placed in specially-allocated
main system memory and accessed piecemeal from the GPU.
Figure 1 illustrates this range of options. Shared-Memory and
in-registers tables can also theoretically be split up, so that a
single core only holds part of a single table, or a single table is
distributed over multiple threads’ associated registers.

Intuitively, one would try to simply place the tables in the
lowest level of the hierarchy, the ”fastest memory”, into which
the table fits; but this intuition can be misleading. Unlike
the simpler hierarchy of CPU memory (Global memory with
coherent caches of decreasing sizes, not-so-many machine
registers) — the GPU’s hierarchy is more complex. It is not a
simple spectrum, from slowest to fastest. Specifically:

• Caches are not coherent, and cache lines sizes differ between
levels — with L1 cache being even larger than L2.
• There is more space available on registers (64 Ki registers

= 256 KiB per core on NVIDIA Kepler and later) as there
is available in Shared memory (64 or 96 KiB per core on
Maxwell and later).
• Registers do not support indexed (a.k.a. indirect) access

— loading the index of the register to access from another
register. They thus have to be scanned in larger numbers
merely for a single access, offsetting the greater latency of
indexed shared memory accesses.
• Then again, shared memory is organized in 32 interleaved

“banks” of 4-byte elements, and if different lanes of the same
warp access different elements in the same bank — these
accesses are serialized, multiplying the warp’s access latency.
• Excess use of registers, or indirect-indexed access to regis-

ters, in source code actually translates to the use of global
device memory, but in a thread-local fashion (referred to
as Local Memory in CUDA parlance). Avoiding this is not
trivial without intentional under-utilization of regiers.
• Atomic access has different absolute and relative penalties

in shared memory and in Global device memory.

These conflicting considerations are already sufficient to
raise interest in comparing implementations using all three
physical memory spaces.

3.5 Hash Table Granularity
Another design decision to make is whether to use fewer

hash tables as possible, perhaps even just a single table — or
rather, more tables, localized to some of the data or some
of the working threads, warps or blocks. The granularity is
constrained from below by the choice of physical memory space:
Placing the table in shared memory or in registers requires at

least one separate table for each thread block or thread, or
alternatively, splitting a table between blocks or threads, and
acting on those parts independently. From above, the choice
of memory space together with the table design serve as a hard
constraint — the capacity of shared memory and the register
file are limited. A soft constraint is posed by features such
as the 32-bank structure of NVIDIA GPU shared memory:
With more than 32 full tables per block, it becomes difficult or
impossible to prevent bank conflicts between accesses to the
different tables (see also in Subsection 4.1 below); and when
these conflicts occur, one might as well reduce the number of
tables and have more threads coordinate access to the same
table.

The constraints still leave ranges of choice at different spaces:
Between 1 and 32 tables in shared memory (if the table is not
too large); between one split table up to 1024 per-thread tables,
theoretically; and in global memory we have the greatest range,
with only the largest of tables being limited by the global
memory size of several GB.

The more tables are used, and the more individual tables
are split up, the more reintegration and table-aggregation
work is to be done as a last phase. With large amounts of data,
the overhead of this final phase is negligible, but it raise the
bar for what constitutes “enough” data to benefit from the
on-GPU execution.

As far as performance is concerned, a single hash table in
global memory that is accessed directly by all GPU threads
is not expected to perform well. Its performance on a GPU
should be weaker than on a CPU, due to higher memory
access latency, exacerbated by the higher number of threads
performing atomic accesses. Such contention becomes even
worse with small hash tables, or when the group keys exhibit
some locality in the order by which tuples are processed — as
more threads will race to update the same table entries.

At the other end of the spectrum is a full hash table per
each thread. The table can even reside in global memory
physically. This may even be practical: GPUs offer a “local
memory” mechanism which is stored in per-thread areas in
global memory; and while access to this memory has high
latency in the worst-case, caching and latency-hiding can make
it faster than one might imagine.

Alternatively, the per-thread tables must reside in shared
memory or in registers. This method can only be used for a
small number of groups (there is at most 1536 KiB of shared
memory per thread). This constraint is even stricter for the
in-register hash tables, because of the need to scan them on
each access.

Another dimension of granularity we have hinted at is the
conceptual partition of individual hash tables, so that an
individual thread is only concerned with one part of a table at
a time — and either makes another pass for another part of the
table later on, or leaves it to other threads to read the same data
and update the global aggregates. This means that a thread-
local hash table only has to store groups that are relevant
for the thread it is associated with. Such decomposition may
allow placement in a lower level of the memory hierarchy even
at larger sizes. It should be noted that hash table partitioning
was also used in [16, §4.2], but for different purposes and under
assumptions irrelevant to our case.

Larger-than-GPU-memory hash tables. In some cases,
the set of group keys may be so large that even a single hash
table cannot fit into GPU global memory. If the factor of
excess relative to available GPU memory is very small, one
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could partition the hash table across several GPUs, using
the approach mentioned above: Each GPU will only consider
tuples with group keys in a designated range; the details of
doing so exceed the scope of this work. One could also use table
partitioning to run multiple passes on a GPU, each ignoring
all tuples except those which hashes into the GPU-resident
part of the table. Unfortunately, if the execution of a single
pass is PCIe-I/O-bound (as is often the case), this approach
slows execution down and thus does not scale.

When a multi-pass approach is inapplicable, very large hash
table would likely have be placed in main system memory.
GPU drivers allow for allocating system memory which is
accessible directly from the GPU, and recent microarchitecture
advances in NVIDIA GPUs (the Pascal generation and later)
have significantly improved the performance in such scenarios:
GPU memory is virtualized and paged so that a page fault due
to a page not being in GPU memory triggers a copy of that
page from system memory, with no need for orchestration of
these transfers by user code [27].

As the very large hash table is the extreme opposite case
from the one we face with our choice of TPC-H Q1, we do
not explore further accommodating it, nor is it part of our
experimental evaluation. It can be said with near certainty,
though, that GPU use would not be recommended for this
kind of a query on an Intel-like platform (where it is a second-
class citizen w.r.t. memory access); but a GPU may well
outperform a CPU socket on a more “even-handed” platform.

3.6 Co-processing
Up to this point we have only discussed the execution of the

query as a whole on the GPU. On a typical platform there is
also a CPU controlling the platform. Naturally, there is no
reason to leave the CPU idle while the GPU is used: System
memory bandwidth is underused, and having both processing
units working concurrently should allow us to squeeze extra
performance from the system.

When processing a more complex query, there are innu-
merable possibilities of splitting work between the CPU and
the GPU for different parts of the execution plan; and we
would choose among them so that the each PU would be
assigned work it tends to better at; and while considering
memory bandwidth use, the overhead of sending intermediary
results back and forth, and so on. In group-by-aggregation
queries, especially simpler ones such as TPC-H Q1, these are
much more limited, especially with only a single table being
involved. We identify the following options for co-processing
in this scenario:

1. Filter Pre-computation. Instead of fusing the entire
query’s work together into a single kernel, we can instead
first compute the WHERE clause filter result, obtaining a
column of boolean values, represented as a bit vector. This
can then be used as input to the actual aggregation. By
computing the filter on the CPU, we do not need to transfer
the table columns involved only in filter computation to
the GPU. Doing so is a trade-off: We benefit from less I/O
to the GPU in exchange for more I/O from main system
memory to the CPU and back and some computation time
on the CPU.

For TPC-H Q1, the I/O saved per tuple is 31 bits with no
compression, 15 bits with our chosen compression schemes
or 11 with the optimal compression scheme, which makes
for 11%, 20% or 22% of the tuple representation size, re-
spectively (see Table 1).

2. Filter Pre-application. A further step beyond filter
precomputation would be to execute the filter on the CPU
side and copy only the matching columns to the CPU.
This approach, however, would require us to scan over
the entire input data and copy the matching columns to
a separate location prior to transferring it to the GPU.
The question is then, if we are already scanning the entire
data set in the CPU, is it not faster to directly perform
the aggregation instead of creating the new columns and
still transferring them to the GPU. Especially for filters
with a high selectivity, this approach requires a lot of CPU
processing for little gain.

3. Aggregate Split (Vertical Partitioning). In queries
involving multiple aggregates, the aggregates involve a
disjoint or nearly-disjoint set of columns. In this case,
certain aggregates could be computed entirely on the CPU
and other aggregates could be computed entirely on the
GPU. In TPC-H Q1, for example, the aggregates involving
l_quantity do not involve l_extendedprice, l_tax and
l_discount. While some columns would be shared (e.g.
the GROUP BY and WHERE columns in our case) Such vertical
partitioning-with-overlap of the query narrows the set of
columns each processing unit has to scan.

4. Data Parallelism (Horizontal partitioning). The
other axis for partitioning the computation involves having
CPU and GPU both compute the same set of aggregates,
but on different subsets of each of the columns. The final
results of each for each of the processing unit are then
merged together, obtaining the final result.

In this work, we investigate the filter precomputation and
data parallelism models of co-processing. The filter preap-
plication method is not useful when the selectivity is high
(and we indeed focus on the default parameter values in the
TPC-H spec, in which the selectivity > 90%); and when se-
lectivity is low, the CPU must scan all of the table columns
to materialize the filtered data, making it less attractive to
delegate the aggregation work to the GPU. Additionally, the
simplicity of Q1 makes it easier to divide the work between
them, both statically/apriori and dynamically, by any ratio
we desire, while with an Aggregate Split there is just one,
or a few, possible vertical partitions. With more complex
queries, however, the vertical split could be more useful — due
to further work which requires different aggregates in their
entirety, which could be assigned to the different processing
units.

Regardless of the choice of preprocessing option, We note
that excessive memory pressure from the CPU side, as it
processes its part of the workload, may potentially starve
out the GPU. Suppose the main memory bandwidth is Bmain

GB/sec and the effective PCIe bandwidth is BPCIe. If the
CPU’s activity allows it to consume more than about Bmain−
BPCIe GB/sec, the GPU may not get the full PCIe bus’ worth
of data — which will hinder its performance if it is I/O-bound
rather than compute-bound. This is a realistic possibility
with today’s CPUs: With 8 or more cores per socket, they are
indeed able them to saturate the main memory bandwidth
with reads.

4. EXPERIMENTS
In this section we choose points within the design space

we’ve mapped in Section 3 — combinations of design decisions
for executing a group-by and aggregation query utilizing a
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Implementation
Data-

parallel Co-
processing

Filter
Precomp-
utation

Hash table
Placement

Time
(sec)

Relative
Standard
Deviation

global 7 7 Global 0.754 1%
local mem 7 7 Global 0.537 1%
shared mem per thread 7 7 Shared 0.547 2%
in registers 7 7 Registers 0.537 1%
in registers per thread 7 7 Registers 0.536 1%

global 7 3 Global 0.848 1%
local mem 7 3 Global 0.528 4%
shared mem per thread 7 3 Shared 0.527 12%
in registers 7 3 Registers 0.529 9%
in registers per thread 7 3 Registers 0.526 4%

global 3 7 Global 0.473 7%
local mem 3 7 Global 0.488 9%
shared mem per thread 3 7 Shared 0.358 22%
in registers 3 7 Registers 0.365 24%
in registers per thread 3 7 Registers 0.380 19%

global 3 3 Global 0.476 12%
local mem 3 3 Global 0.507 1%
shared mem per thread 3 3 Shared 0.372 19%
in registers 3 3 Registers 0.378 18%
in registers per thread 3 3 Registers 0.374 23%

Table 2: Overall query execution time for TPC-H Q1 at SF100 our implementations for compressed data.

GPU — which may be evaluated in the context of TPC-H
Q1. To evaluate the performance of the various points in this
constellation, we use a smaller number of basic implementation,
executed and timed with different run-time and “JIT-time”
variations.

Experimental setup. All experiments were run on a dual-
socket machine with two Xeon E5-2650 8-core CPUs (but
only one socket was used) and a NVIDIA GeForce GTX 1080
Ti card; its chip is the GP104: Pascal microarchitecture,
Compute capability 6.1, 28-physical-core. The system has
256 GB of DRAM memory. Software: Fedora GNU/Linux 26
with kernel version 4.15.17, CUDA version 9.1.85 and NVIDIA
driver version 390.48; GCC 6.4.0 was used for compilation.

Data set. The data set used is the lineitem table from the
TPC-H benchmark [28]. The TPC-H data-set is generated in
a uniform distribution with no local skew, noise or outliers.
We used Scale Factor 100, which results in ≈600M records in
the lineitem table.

Experimental procedure. To obtain each result, we ran the
query 5 times and computed the sample mean and population
standard deviation. Timing began when the (un/)compressed
columns were in memory, and after all relevant memory alloca-
tion had occurred (we did not allocate additional on-CPU or
on-GPU memory during the query run). We did not time the 3
divisions required to provide the averages from the aggregated
sums (see 1), as they are insignificant, nor the printing or
transmission of the query results.

4.1 Implementation Flavors
Our implementations for TPC-H Q1 all use hash tables

based aggregation; and all of them use the enumeration-based
perfect hash function discussed in Subsection 3.3: The hash
table has 6 entries (with 4 in actual use). This permits us
to cover the spectrum of choices for placement — except
for the case of exceeding GPU global memory, which cannot

occur with TPC-H Q1. We have implemented the following
variations:

1. global. A single hash table in global GPU memory.
2. local mem. A hash table for each working thread in

local memory (i.e. in thread-distinct areas of global mem-
ory).

3. shared mem per thread. A hash table for each work-
ing thread in shared memory. The hash tables in this
implementation are not placed contiguously, but are rather
interleaved in such a way, that all of a thread’s hash table
lies within two consecutive shared memory banks (for 64-
bit aggregates), or one bank (for 32-bit aggregates). This
ensures that regardless of which table index each lane has,
the warp’s shared memory access into the table is guar-
anteed to have no bank conflicts. Such an interleaving is
described in [30, Fig. 6 & Listing 5] (for the case of byte
values).

4. in registers. A separate hash table for each working
thread in its registers.

5. in registers per thread. A single table cell per working
thread, in a register. In this implementation we hold several
hash tables per warp, distributed across multiple threads’
register, so that each thread holds (and updates) only a
single table cell (for a given aggregate); this results in (warp
size) / (no. table size) =32/6=5 tables per warp.

Co-Processing. To experiment with execution on the
CPU, we have adapted the implementation presented in [15],
and introduced a Morsel-driven model of parallelized execu-
tion, as suggested in [19]. The implementation is guaranteed
to have NUMA locality both due to the Morsel-driven model,
but also apriori, as we restrict ourselves to processing on a
single CPU socket. For the collaborative use of the CPU
and the GPU, we have implemented two of the options for
co-processing described in 3.6: Filter Precomputation and
Data Parallelism.
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Placement Threads per Grid Block
global 32 64 128 160 256 512

32 785 796 798 809 800 806
64 804 820 823 821 828 820
128 794 803 789 781 801 799
256 779 783 785 792 786
512 772 781 784
1024 783 794

in_registers 32 64 128 160 256 512
32 116
64 99
128 96
256 98
512
1024

in_registers_per_thread 32 64 128 160 256 512
32 578 576 576 542 526 377
64 552 550 550 536 524 369
128 556 555 554 517 502 391
256 454 447 445 447 438
512 357 360 360
1024 536 550

local_mem 32 64 128 160 256 512
32 492 489 489 462 445 321
64 478 474 476 447 434 291
128 478 475 474 433 417 294
256 363 355 354 360 341
512 229 227 226
1024 286 297

shared_mem_per_thread 32 64 128 160 256 512
32 178 171 176 175
64 110 109 108 109
128 89 91 87 89
256 78 77 78 79
512 69 69 69
1024 112 110

Tuples per 
Thread

Table 3: Sum of kernel on-GPU execution times, in millisec-
onds, at SF100, for the different implementations of a TPC-H
Q1 kernel, using compressed data and without filter on-CPU
precomputation.

4.2 Parameter settings
When scheduling execution of each of our implementations,

we can vary the following parameters without disrupting its
basic mode of operation:

1. Tuples per thread. The number of of tuples processed
by each thread, in each grid block, of each scheduled kernel.

2. Kernel grid block size. The number of threads assigned
to the same GPU computing core (“streaming multipro-
cessor”) with a common L1-like Shared memory region. If
the number of hash tables also depends on the block size
(for tables placed in Shared memory or in registers), this is
indirectly a cap on that number as well.

3. Processed batch size. The number of tuples for which
a transfer of column data to the GPU, an on-GPU kernel
execution, and potentially a filter pre-computation, are
scheduled once, as a whole (and using the same GPU
stream).

4. GPU streams. The number of streams onto which we
enqueue batches of work.

The batch size must be large enough to accommodate kernel
launches with enough tuples processed per thread, in large
enough blocks, and with enough blocks so that each GPU core
(“streaming multiprocessor”) has enough warps available for
execution so as to hide memory access latency; in other words

— it is determined last, by the other parameters. We increased

it gradually by factors of 2 after setting other parameters until,
for all placemements, there was no benefit or essentially no
benefit in increasing it further; this occurred at 222 =4194304
tuples per batch, which makes for nearly 40 MB of data. This
affirms the common assumption that On-GPU processing
requires much larger batches of data to be effective. However,
it may be the case that more careful merging using less atomic
accesses to global memory could reduce this value.

The number of streams used for scheduling must be at
least 2, to allow for overlapped Compute and I/O. It may be
the case that with more complex queries, this value is more
significant; but with TPC-H Q1, however, the scheduled work
is highly regular: Same-size batches and nearly-uniform kernel
execution. We have chosen to fix the number of streams at
4, noticing no benefit in increasing them further, nor closely
investigating performance with 2 or 3 streams.

The two remaining parameters are more complex to deter-
mine, or at least determine exactly. There is some delicate
interplay between them and various specifics of the code, the
microarchitecture and on the exact GPU specifications, so that
their effect on performance is not even monotone, and behaves
differently for each of our implementations. The specifics ap-
pear in Table 3. If one is willing to settle for close-to-optimal
values, a rough rule of thumb for group-by-aggregation queries
similar to TPC-H Q1 may be: As many threads per block
as possible while not compromising the number of registers
available to each block (which does drop after 256 on NVIDIA
GPUs); and having each thread process hundreds of tuples,
but keeping a decent number of grid blocks, e.g. at least 4
times the number of physical cores on the GPU.

4.3 Results
The overall query processing times and on-GPU compu-

tation times are listed in Table 2. The optimal on-GPU
execution times for our different implementations, ignoring
data transfers appear as the boldface cells in the heatmaps in
Table 3.

We first observe that, with almost all of our implementation
variants, the execution time is very close to the PCIe
transfer time to the GPU. In the compressed case, this is
5.625 GB of data divided by 11.4 GB/sec, the typical achieved
transfer rate, or about 0.493 seconds. I/O does not actually
take place continuously through the execution, due to some
gaps between consecutive transfers — which do not occur due
to streams’ being busy with compute tasks. Some of this gap
can be attributed to the the fact that the computation on
the last batch of data occurs begins once it has been received
entirely, during which time the PCIe bus is unused; but this is
not a significant part. We have not determined how the “blame”
for this inefficiency is shared by our code, by the NVIDIA
runtime and driver code, and by the hardware itself; our only
finding on this matter is that the gaps are independent of the
specific choice of implementation.

As our GPU executions (or parts therefore) are I/O bound,
it is unsurprising that the use of data compression affords
the most significant performance benefit; in fact, it is
the only design choice with any effect, other than avoiding a
single global hash table. The difference between our implemen-
tations are apparent only when ignoring the PCIe transfers
and considering on-GPU execution times separately. We recall
that for on-CPU execution, the challenge TPC-H Q1 poses is
considered to be the high amount of raw expression arithmetic
and aggregation work [6, §2.1, Table 1]. But on the GPU —
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TPC-H Q1 involves only a little arithmetic and not
much aggregation work — not enough to stress the GPU’s
raw computing power.

The single implementation which is not I/O-bound is still
noteworthy: The single global hash table performance is only
about 50% slower than than the I/O limit on performance.
The very-few-groups case ensures the hash table resides in
L2 cache (L1 residence is not useful, as many cores write to
the same cache lines all the time); but it also has a lot of
contention of atomic operations on the same hash table cells;
and with larger group indices, the PCIe transfer time will also
increase. Thus it is conceivable that performance will not
degrade terribly for larger tables. On the other hand, as tables
grow, less of each cache line would be used when it is fetched,
and TLB misses will start affecting performance. Thus the
performance here is not sufficient cause for optimism. The
behavior of a global hash table with increasing size is discussed
in depth in [17, §3], but in that case an actual hash function is
used, and collisions are sometimes an issue.

If we do ignore the transfer time, the on-GPU computation
shines: TPC-H Q1 can be processed on a single GPU in
68 milliseconds, about an order of magnitude faster than a
state-of-the-art CPU implementation on our test machine.

CPU use and co-processing. In single-processor execution,
The GPU implementations, despite being PCIe-bottlenecked,
perform much better than the optimized CPU implementation;
however, our test machine does not use the latest-generation
CPU available. Preliminary testing on an Intel Kaby lake
(7XXX) CPU suggests this advantage is lost, and CPU ex-
ecution is about as fast as the PCIe transfer speed of the
compressed data.

When applying filter precomputation, we gain slightly in
speed, about 2% — but this is within 2 standard deviations
of the result for most placements, making it statistically ques-
tionable. When we add filter precomputation to data-parallel
co-processing, this yields little or no benefit, and in fact slows
computation down by up to 5% with non-global placement.
This suggests that our test machine CPU is about as fast in
computing the filter as it is to transfer 15 extra bits per tuple
to the GPU (assuming naively no other overhead). On a more
modern CPU, the precomputation will be faster, and benefit
will likely be pronounced.

The more conclusive and significant result, though, is the
marked improvement with our second preprocessing option:
Data parallel coprocessing yields a 30% speedup over
the best single-processor implementation on our test
system, arbitrarily assigning half of the workload to the CPU;
and this figure does seem to carry over to newer CPUs.

Finally, we note that in our experiments involving CPU use,
execution times varied much more significantly. While there
might also be some variance with on-GPU computational
work, it is is mostly hidden by the PCIe transfer times, which
are more stable. We specifically noticed the first execution
out of every repeated sequence of executions with the same
parameters performs significantly worse, and the rest have
less variance.

5. RELATED WORK
Karnagel et al. [17] studied the execution of SELECT aggregate

FROM tbl GROUP BY columns queries. Unlike in this work,
they assume a perfect hash function is not available, and focus
on hash table design with an imperfect function. Similarly

to this work, they also consider placing small hash tables in
shared memory, but do not go “lower” than that, into the
register file; nor do they consider local memory placement.

The study assumes the table placement is easily determined
solely by the number of groups, while we have found that
there is a more complex interplay with additional parame-
ters. Karnagel et al. [17] characterizes regions of behavior
of hash tables by the number of groups (and fill factor), on
NVIDIA Kepler microarchitectural GPU. Unfortunately, the
microarchitectural features changes over time. This work
used a second microarchitecture after Kepler (Pascal), while
a third one (Volta) was in production and another one named
but not yet released. By the time the work was published,
performance of shared-memory atomic operations had already
greatly improved with the Maxwell microarchitecture [26],
significantly impacting the results. It’s also important to
note that hardware features and behavior does not always
correspond to the features in NVIDIA’s PTX intermediary
representation, as implied in [17, Table 1].

The focus in Karnagel et al. [17] on tables with larger groups
also led its authors to dedicate a separate kernel to merging
multiple hash tables in case those were placed in global memory

— a choice we did not need to consider for TPC-H Q1. The
GPU-CPU co-processing is not considered in the work, and
neither do they discuss the use of compression for reading in
the data.

With regard to the “CPU side”: group-by-aggregation query
processing purely on a CPU is treated in the recent [15]: It
surveys earlier work; maps out the design space similarly to
our Section 3, but for a modern CPU; and demonstrates the
effectiveness of aggressively optimizing using SIMD instruc-
tions — specifically for TPC-H Q1. As mentioned earlier, the
code used in [15] is used in large part in this work.

TPC-H Q1 Performance
It has been observed [3] that much of the published work on
query processing using GPUs uses problematic baselines: If
one speeds up a slower CPU-targeted DBMS using GPU —
this does not imply that GPUs are useful for query processing,
nor that one’s GPU implementation is of good quality relative
to the device’s potential. This is true specifically for TPC-H
results, typically published as performance benchmarks for
GPU-utilizing query processing systems. This is illustrated
in Table 4, comparing prominent recently-published results
for TPC-H Q1. The results have been scaled to SF 100, under
an assumption of linear scaling. Results involving CPUs are
not normalized for different CPU strengths, as a choice of a
normalization scheme is difficult (if not even a source of bias);
the reader is encouraged to consult the cited publications to
better understand the numbers.

As noted above, a reasonable implementation of Q1 on
the GPU, reasonably scheduled, should be strongly PCIe-
bottlenecked, with actual kernels taking much less time than
that; however, existing systems are typically an order of mag-
nitude slower in overall performance, and considering also
tbl:grid-params-heatmap-and-kernel-perf — apparently much
slower still with resplect to on-GPU work only.

That is not to discount these contributions: In this work,
we’ve had the luxury of hand-optimizing — even if such opti-
mization could theoretically be the result of JIT compilation;
and our custom code need only accommodate one use case,
while these systems are designed to be general. Still, a GPU-
utilizing system, which uses group-by-aggregation queries as
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System Reported in
CPU /
GPU

Time
(msec)

Published
SF

Scaled
to SF 100

Red Fox [31, Table 3] GPU 330 1 (33000)
Ocelot [22, Fig. 12] GPU 347 10 3470
Voodoo [22, Fig. 12] GPU 294 10 2940
AXE/GPU [2, Table 3] GPU 25.8 1 2580
CoGaDB/HorseQC [12, Fig. 22] GPU ∼350 10 3500
(This work) Table 2 GPU 536 100 536
(Net PCIe I/O,
compressed)

GPU 493 100 493

Red Fox [31] CPU 2760 1 2.7e6
Voodoo [22, Fig. 13] CPU 162 10 1620
HyPeR DB [22, Fig. 13] CPU 120 10 1200
AXE/CPU [2, Table 3] CPU (83.8) 1 (8380)
(This work) Table 2 CPU 791 100 791

(This work) CPU+GPU 373 100 385

Table 4: TPC-H Q1 execution times in previously published
work.

key benchmarks, is fundamentally flawed unless it either over-
performs a relevant CPU, or at least is PCIe-I/O-bounded.
The first option is highly unlikely with TPC-H Q1 on an Intel
platform, but the second one is not exceedingly hard to achieve.
When hand-coded kernels are faster than a system’s execu-
tion plan by over 100x on a prominent benchmark query, the
system’s design is called into question; specifically, it makes it
difficult to draw conclusions regarding such systems choices
of points within the design space for the relevant category of
queries.

A final point regarding to most systems mentioned above re-
gards co-processing. Ocelot, Red Fox, Voodoo and“AXE/GPU”
of [2] all have published results both for processing on a CPU
and for processing on a GPU; but their authors have not pub-
lished results nor claimed the capability of co-processing, with
both PUs at once, as we have done in this work. Perhaps this is
due to the general nature of these experimental systems: Since
they’ve not tackled the challenge of preprocessing generally,
no SQL-fragment-specific solution is available even for simple
queries. On the other hand, it should not be exceedingly
difficult for a query processor’s developers to implement at
least some opportunistic data-parallel coprocessing. Unfortu-
nately, at least three (if not all four) of the above systems are
essentially abandoned, so this situation is unlikely to change
for them.

6. CONCLUSION
In this paper, we have explored part of the design space of

processing grouping and aggregation operations on GPU+CPU
co-processing, in the admittedly narrow context of TPC-H
Query 1. Overall, we are pleased to have achieved signifi-
cantly improved performance with respect to an aggressively
optimized CPU-only baseline.

Future Work
We plan to extend our work to Group-By/aggregations in-
volving larger numbers of groups. This would involve both
variations on our implemented placement choices as well as
work with in-system-memory tables (working on table seg-
ments and/or via unified memory access). It is particularly
interesting to compare the competitive and collaborative be-
haviors of CPUs and GPUs, as the performance degradation
with table size increase behaves differently for each kind of
processor.

We believe it is also necessary to experiment with group-by
aggregation queries on non-uniform data distributions — even

still in the limited context of TPC-H Q1-like queries — as
these distributions heavily influence the processing of a query.
We expect that other compression schemes will be required,
likely with significantly better ratios. The need to decompress
these may shift the balance more in the favor of GPUs relative
to CPUs.

There is also a significant work to be done to integrate design
choices such as those we have described into a proper DBMS.
This work includes, among other matters, a a kernel JIT com-
pilation, with more complex operator fusion than in existing
(CPU and GPU) systems and a richer optimization framework
recognizing some of the concepts and considerations we have
discussed. We also believe that such a system will lend itself
towards multi-faceted co-processing, marshalling dependent
and independents fragments on an execution plan on and be-
tween CPUs, GPUs and other processing devices, dynamically
learning to exploit the “best of both (or multiple) worlds” [14].
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sparse table with 0(1) worst case access time. J. ACM,
31(3):538–544, June 1984.

[12] H. Funke, S. Breß, S. Noll, V. Markl, and J. Teubner.
Pipelined query processing in coprocessor environments.
In Proc. ICDE, pages 1603–1618. ACM, 2018.

[13] C. Gregg and K. Hazelwood. Where is the data? Why
you cannot debate CPU vs. GPU performance without
the answer. In Proc. ISPASS, pages 134–144, Apr 2011.

10



[14] T. Gubner. Designing an adaptive VM that combines
vectorized and JIT execution on heterogeneous
hardware. In Proc. ICDE, 2018.

[15] T. Gubner and P. A. Boncz. Exploring Query Execution
Strategies for JIT, Vectorization and SIMD. In
ADMS@VLDB, 2017.

[16] B. He, N. K. Govindaraju, Q. Luo, and B. Smith.
Efficient Gather and Scatter operations on graphics
processors. In Proc. SC, page 46. ACM, 2007.

[17] T. Karnagel, R. Müller, and G. M. Lohman. Optimizing
GPU-accelerated group-by and aggregation. In Proc.
ADMS, 2015.

[18] C. Kim, T. Kaldewey, V. W. Lee, E. Sedlar, A. D.
Nguyen, N. Satish, J. Chhugani, A. Di Blas, and
P. Dubey. Sort vs. Hash revisited: Fast join
implementation on modern multi-core CPUs. PVLDB,
2(2):1378–1389, Aug. 2009.

[19] V. Leis, P. Boncz, A. Kemper, and T. Neumann.
Morsel-driven parallelism: a NUMA-aware query
evaluation framework for the many-core age. In Proc.
SIGMOD, pages 743–754. ACM, 2014.

[20] X. Mei and X. Chu. Dissecting GPU Memory Hierarchy
Through Microbenchmarking. IEEE Trans. Parallel
Distrib. Syst., 28(1):72–86, Jan. 2017.

[21] J. Owens, D. Luebke, N. Govindaraju, M. Harris,
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