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ABSTRACT
We leverage vectorized User-Defined Functions (UDFs) to effi-
ciently integrate unchanged machine learning pipelines into an
analytical data management system. The entire pipelines includ-
ing data, models, parameters and evaluation outcomes are stored
and executed inside the database system. Experiments using our
MonetDB/Python UDFs show greatly improved performance due
to reduced data movement and parallel processing opportuni-
ties. In addition, this integration enables meta-analysis of models
using relational queries.

1 INTRODUCTION
The ad-hoc nature of data analysis pipelines using complex statis-
tical or machine learning algorithms bundled with large volumes
of data quickly leads to a latent need for data management sys-
tems [9]: 1) Manually managing large datasets as flat files quickly
becomes cumbersome and error-prone, and additionally intro-
duces many difficulties when multiple people are working with
the same data or when the data has to be written to or updated. 2)
Loading data from structured text files (e.g. XML or CSV) is very
inefficient, as the data has to be parsed and converted to native
binary formats before being subjected to analysis. Files are read
from disk every single time an analysis pipeline is run, signifi-
cantly increasing the time necessary to run these pipelines. These
problems are exasperated as analysis pipelines are evaluated and
moved towards production use.

These problems can be solved by using existing relational
database management technologies. However, it has traditionally
been very difficult to combine analytical tools with relational
databases. The standard approach of running a separate database
server and connecting with it through a socket connection is
very inefficient and introduces severe bottlenecks when work-
ing with large amounts of data [15]. On the other end of the
spectrum, in-database processing techniques have typically been
cumbersome and difficult to use. Rewriting analytical pipelines
in plain SQL is non-trivial and the subject of research papers [10].
Traditional scalar user-defined functions (UDFs) as supported by
“mainstream” relational data management systems are difficult
to utilize for complex machine learning tasks where a view on
the entire dataset is required.

Recently, vectorized UDFs [8, 14] have been proposed that
allow for efficient and flexible integration of popular analytical
tools inside column-store databases. By utilizing these UDFs,
existing complex analytical pipelines can be moved inside the
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database. This allows us to gain all the advantages of storing
data inside a relational database, while still having flexible and
easy-to-use analytical tools available.

An additional benefit of training and using machine learning
models directly in the database is that it is possible to persist both
models and metadata (e.g. classification scores on test sets) in the
database. Standard relational queries can then be used to apply
the trained models to data. This allows for example to compare
and combine output from multiple models, each specialized for
certain classification tasks. Also, it is possible to classify the same
data using multiple models and use the result of the model that
reports the highest confidence.

In this paper we showcase how we can use vectorized user-
defined functions to efficiently integrate a complex analysis
pipeline inside a columnar database management system. We
show how we can train models directly inside the database, and
how to store the models and subsequently use them to classify
data without having to export the data from the database system.

The main contributions of this paper are:

• We show how traditional classification models can be in-
tegrated into a column-store relational database manage-
ment system.

• We describe how models can be stored inside the data-
base system and how these models can then be used to
efficiently and flexibly classify data.

• We experimentally show the performance benefit of di-
rectly running the models inside the database system ver-
sus loading the data from structured text, binary files or
using database client protocols.

Outline. This paper is organized as follows: Section 2 dis-
cusses related work. Section 3 presents our integration approach,
followed by a concrete use-case and performance results in Sec-
tion 4. In Section 5 we draw our conclusions and discuss future
work.

2 RELATEDWORK
There is a variety of related work on combining relational data-
base systems with machine learning pipelines. In this section we
will present the most recent related work regarding the integra-
tion of machine learning through UDFs and model management
systems and compare them with our solution.

2.1 Machine Learning Integration
Integrating existing Database Management Systems and machine
learning algorithms has been a long standing problem due to the
complexity of implementing the machine learning code inside a
DBMS.



Early work [2, 16] on this focuses on rewriting analytical
algorithms into portable SQL code. This allows the pipelines to be
executed within any database system without requiring database-
specific modifications. However, rewriting complex analytical
pipelines in SQL requires a lot of manual effort and might not
be possible for certain algorithms because SQL is not a Turing
complete language.

In Ordonez et al. [12], machine learning algorithms are trans-
lated to either C, C++ or C# code (depending on the DBMS
language support) and inserted into UDFs. As a consequence
they achieve high performance when analyzing large data sets
compared to external data analysis tools, as data movement is
mitigated. However, these algorithm must be coded in one of
the previously listed languages. This often results in the need
for rewriting code, because most prominent machine learning
libraries are usually available in scripting languages (e.g., Python
and R). In our solution we allow the developer to use popular
scripting languages together with their entire ecosystem of data
analytics packages as UDFs in MonetDB.

Other work [4, 6, 7] focuses on more templated approaches
for machine learning integration to reduce the necessity of code
rewriting. However, the main disadvantage of these methods is
that they only work for a limited subset of algorithms, which
limits their applicability to general machine learning tasks.

2.2 Machine Learning Model Management
When training and using a variety of models the problem of
managing these models arises. This problem is exasperated be-
cause most Machine Learning Systems do not provide support
for storing and querying their models. Due to these issues, data
scientists quickly lose track of their models.

In Vartak et al. [19], a system called ModelDB is introduced
that can be used for storing, tracking and managing machine
learning models in their native environment. This allows data
scientists to use SQL to query their models based on their meta-
data (e.g., hyperparameters, parameters) and quality metrics (e.g.,
accuracy). It also has the option to store the used train/test data
sets for each model. However, since ModelDB only stores the
models in their native environment, it does not provide a solu-
tion for coupling machine learning applications with traditional
relational databases.

3 MACHINE LEARNING INTEGRATION
Machine learning pipelines consist of three stages [5].

(1) Preprocessing. In this stage, the raw data is loaded and
cleaned. The data is normalized, and any inconsistencies
from incorrect or missing measurements are corrected for
or removed.

(2) Training andVerification. In this stage, the cleaned data
is used to train the model. Typically the training set is
divided into parts, and techniques like cross validation are
used to prevent overfitting the model.

(3) Classification. In the final stage, the trained model is
used to classify new data. In this stage, the model can still
be refined further based on new data or new properties of
the data.

The preprocessing stage can often be performed entirelywithin
traditional database management systems. Loading data and sim-
ple cleaning operations such as missing value removal can be
done using standard SQL queries. However, when more advanced

preprocessing such as interpolation is required, user-defined func-
tions can be used to simplify this step.

The real challenge of integrating these pipelines into databases,
however, is implementing the machine-learning models. The
models rely on complex math operations and iterative refinement,
which are not supported by standards-complaint SQL.

There are many libraries and packages in vectorized scripting
languages that implement commonmachine learning and classifi-
cation models, such as TensorFlow [1] and Sci-Kit Learn [13]. Us-
ing vectorized user-defined functions, we can plug these libraries
into the database. However, the typical processing pipelines must
be adjusted so they can fit into a SQL workflow. In this section,
we will describe how these analytical pipelines can be integrated
into traditional database management systems through the use
of user-defined functions.

3.1 Training
To train a classification model, we take a set of annotated data as
input and use the annotations to find patterns in the data. After
learning these patterns, the trained model can accurately classify
un-annotated data.

The training pipeline therefore takes as input a set of columns
representing the data, and a single column representing the
classes of the data. This will be the input to our user-defined
function. The output of this stage of the pipeline is the trained
model, which will be the output of our UDF. The actual creation
and training of the model will happen inside the function.

Model Storage.Models exist as in-memory objects within the
scripting language. However, they can be serialized to a binary
format for persistent storage on disk. In Python, this is done using
the pickle library. In order to store the objects in the database
we need to serialize the objects to this binary format, after which
we can place them in a BLOB field.

Listing 1: Training The Model
1 CREATE FUNCTION train(data INTEGER, classes INTEGER,
2 n_estimators INTEGER)
3 RETURNS TABLE(classifier BLOB, estimators INTEGER)
4 LANGUAGE PYTHON
5 {
6 import pickle
7 from sklearn.ensemble
8 import RandomForestClassifier
9
10 clf = RandomForestClassifier(n_estimators)
11
12 clf.fit(data, classes)
13
14 return {'classifier': pickle.dumps(clf),
15 'estimators':n_estimators }
16 };

An example of a user-defined function that trains a Random
Forest Classifier using Sci-Kit Learn is given in Listing 1. This is
a vectorized user-defined function, and as such both data and
classes are vectors of integers within the function instead of
individual elements. This function can be called from within SQL
with the model data, classes and the amount of estimators (i.e.,
model parameters) as input, and will produce a table containing
the trained classifier and its meta-data as output. This table can
either be stored in the database, or used directly as input to
another function that uses the trained classifier (if no persistent
storage is necessary). Note that it is trivial to alter this UDF to
train a different model from the Sci-Kit Learn library, as all that
is required is importing a different model and using that.



3.2 Classification
After the model has been trained, it is ready to accept unlabeled
data and can be used to classify that data. The classification
stage therefore takes as input a set of columns representing the
unannotated data, and the trained classifier that will be used
to classify the data. The output is the set of predicted labels
produced by the classifier. Inside the user-defined function, the
classifier will again have to be deserialized into an in-memory
object, after which it can be used to classify the input data and
produce a set of labels.

An example of a user-defined function that classifies a set of
data is given in Listing 2. This function can be called from within
SQL with the unlabeled data and the classifier as input, and will
produce a list of predicted classes.

Listing 2: Classification
1 CREATE FUNCTION predict(data INTEGER, classifier BLOB)
2 RETURNS INTEGER
3 LANGUAGE PYTHON
4 {
5 import pickle
6 classifier = pickle.loads(classifier)
7 return classifier.predict(data)
8 };

The predict function can be used both to test a trained model
and to classify a set of new data using such a model. The model
can be tested by predicting a set of data for which the labels
are known, and comparing the predicted labels against the new
labels. The model can be used to

3.3 Ensemble Learning
In addition to only storing the trained models, we can store addi-
tional metadata about the models in the database. This metadata
can include information such as parameters used to instantiate
the model, or information about the effectiveness of the model
obtained through testing it against certain datasets. We can then
choose a model to classify new data based on this metadata, or we
could classify the data using multiple models that are stored and
use the results from the classifier with the highest confidence.

4 EXPERIMENTAL ANALYSIS
In this section, we demonstrate how a real classification pipeline
can be integrated into a column-store database, and show how
the in-database processing pipeline performs when compared
against the same pipeline implemented in a standard scripting
language where the input data is loaded from a file or transferred
over a database socket connection.

The pipeline we use in our experiments is used to attempt
to classify who people from North Carolina will vote for in the
Presidential Elections based on data from the 2012 Presidential
Election. For this purpose, we use two separate datasets:

• The North Carolina Voters Dataset contains the infor-
mation about the individual voters. This is a dataset of
7.5M rows, where each row contains information about the
voter. There are 96 columns in total, describing character-
istics such as place of residence, gender, age and ethnicity.
Note that we do not know who each person actually voted
for, as this information is not publicly available.

• The Precint Votes Dataset contains the aggregated vot-
ing statistics for each precinct, (i.e., how many people in
each precinct voted Democrat, and how many voted Re-
publican). This dataset has 2751 rows, one for each precinct
in North Carolina.

By combining these two datasets we can attempt to classify in-
dividual voters. We know the voting records of a specific precinct,
and we know in which precinct each person voted, so we can
make an educated guess who each person voted for based on this
information.

Preprocessing. As we do not have the true class labels for
each voter, we have to generate them from the information we
have about the precincts. This requires us to join the voter data
with the precinct data, giving us the voting records of the precinct
that each voter voted in. We then generate a “true” class la-
bel for each voter using a weighted random function based on
the precinct voting records. For example, if voters in a specific
precinct voted for Democrats 60% of the time, each voter in that
precinct has a 60% chance of being classified as Democrat and
40% chance of being classified as Republican.

Training. After we have generated the true class labels, we
have to train the model using the data and the labels. However,
we don’t simply want to use all the data for training. Instead,
we want to divide the data into a training set and a test set to
prevent overfitting. We then feed the data in the training set to
the model using the function shown in Listing 1 and store the
resulting model in the database.

Testing. After the model is trained, we want to test how it
performs by classifying the data in the test set and looking at the
results. We can classify the voters in the test set by running the
function shown in Listing 2. After having obtained the predicted
class labels, we can test the accuracy of our model by comparing
against the known true class labels of the data. However, since
we only have the generated class labels of the individual voters,
comparing the predicted labels against those would not give us a
lot of information about our classification accuracy. Instead, we
aggregate the total amount of predicted votes for each party by
precinct. Then we compare the aggregated predictions against
the known amount of votes in each precinct.

PerformanceAnalysis.To determine howwell our in-database
processing solution performs compared to ad-hoc analysis pipelines
we have implemented the pipeline described above both (1) using
MonetDB/Python UDFs and (2) inside Python, using various dif-
ferent methods of initially loading the data. For loading the data
in Python, we have experimented with loading from binary files
(NumPy [20] files and HDF5 [18] using PyTables), CSV files using
an optimized parser, transferring the data to Python through a
database socket connection (with PostgreSQL [17], MySQL [21]
and SQLite [3] as database servers). For the scenarios where
the data is stored inside a relational database, we use SQL to
perform the preprocessing steps involving joins and aggrega-
tions. Whereas for the pure Python solutions, we use the Pandas
library [11] to perform these steps.

The experiments were run on a Fedora (Release 26) machine
with 2.6GHz 8-core Intel Xeon processor (Turbo Boost up to
3.2GHz), 20MB shared L3 cache and 256 GB of RAM. All the
tests are hot runs. The datasets and source code used for the
experiments are publically available1.

Results. The results of the benchmark are displayed in Fig-
ure 1. The numbers display the total time required to run the
entire classification pipeline, whereas the bottom gray bars in-
dicate the time spent loading the initial data into Python and
performing the initial preprocessing steps and aggregations.

1https://github.com/pholanda/VoterClassification

https://github.com/pholanda/VoterClassification


Figure 1: Voter Classification Benchmark

We can see that the in-database processing solution using
MonetDB/Python is significantly faster than the alternative data-
base solutions. The time spent on initial wrangling of the data is
an order of magnitude lower than transferring it over a socket
connection using the other database solutions. We also note that
loading the data from CSV files is comparable in speed to trans-
ferring the data over a socket connection.

Loading the data from binary files is much faster than load-
ing from structured text or transferring the data over a socket
connection. However, this introduces additional challenges in
managing the data. Especially in the case of NumPy binary files,
where each of the 96 columns is stored as a separate file on disk.
We do still see that the in-database processing solution spends
less time on initial wrangling of the data and runs the entire
pipeline significantly faster.

5 CONCLUSION
In this work, we have shown how complex analysis pipelines
can be efficiently integrated into column-store databases. Using
these pipelines, it is possible to perform preprocessing, training,
testing and prediction using complex machine learning models
directly on data stored within a relational database. We have
demonstrated the efficiency gained from using these in-database
processing methods, and shown the additional benefits that come
with storing data in a relational database system.

5.1 Future Work
In our pipeline, there is still some unnecessary overhead in the
serialization of the models. Whenever a model is stored in the
database, we are serializing it to a BLOB. Before it can be used
again, it must be deserialized. For larger models, this can have a
performance impact. The database system could be extended to
directly store snapshots of the in-memory representation of the
models to avoid this (de)serialization overhead.

Additionally, we have only experimented with datasets that
fit in memory. Additional work could be done on working with

out-of-memory datasets, distributed execution of the UDFs, or
applying several models to the data in parallel.
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