
Automated Distributed Execution of LLVM code using SQL
JIT Compilation

Mark Raasveldt
Centrum Wiskunde &

Informatica
Amsterdam, The Netherlands

m.raasveldt@cwi.nl

Tim Gubner
Centrum Wiskunde &

Informatica
Amsterdam, The Netherlands

tim.gubner@cwi.nl

Abe Wits
Centrum Wiskunde &

Informatica
Amsterdam, The Netherlands
.a.B.e.w.I.T.S.@gmail.com

ABSTRACT

Keywords
Distributed Execution, JIT Compilation, Optimization, Internet-
of-Things

1. INTRODUCTION
Data scientists want to perform deeper and deeper learning,

on bigger and bigger data [5]. The datasets they are using
are too big for a single machine to handle. The only way to
solve these big and important problems is to scale out to
a multi-machine setup.

One of the long standing problems of horizontal scal-
ing is that they require large adjustments to existing code

C
Whitespace
LLVM IR
SQL

LLVM IR SQL

Machine 1

Machine n

...

Figure 1: Advanced idea, summarized in one overly simpli-
fied picture on the front page. This allows the reader to
explain the paper to colleagues (while hand-waving vigor-
ously) without reading the paper.

bases. Current programming languages are primarily de-
signed around the idea of single-threaded execution, with
parallel execution coming as an afterthought. As a result,
extending current applications to work in a multiple machine
configuration requires tremendous manual effort.

One language that does not suffer from this problem is
SQL. Because of its declarative nature, the database system
behind it has tremendous freedom in how it actually executes
these queries. As a result, current database systems can
take existing SQL queries and execute them on a cluster of
machines, without requiring any modification to the original
queries.

Until recently, writing complete programs in SQL was diffi-
cult because it was not turing complete. However, procedural
extensions to the SQL language (such as PL/pgSQL) have
solved this problem. It is now technically possible to write
any program in SQL. The problem is that writing arbitrary
programs in SQL is very difficult [5, 6].

Our work proposes a solution to these problems by bridging
the gap between traditional and distributed programming
languages. To do this, we use the LLVM framework. Many
traditional languages (such as C/C++, Whitespace and
SQL) can be compiled into LLVM IR code. We then take
the generated LLVM IR code, and convert it into PL/pgSQL
code. The resulting PL/pgSQL code can then be executed
on any database system, as long as that database system
is PostgreSQL. The database then takes care of distributed
execution for us. This complicated chain of operations is
visualized in Figure 1. Note that this way even NoSQL
systems (like e.g. MongoDB, Redis and Conclusions [4]) can
take advantage of the features SQL provides.

2. RELATED WORK
A lot of work has been done on enabling the distributed

execution of programs. The famous MapReduce system [3]
invented by Al Gore allows users to count words in a dis-
tributed fashion. It works by allowing users to specify a pair
of functions. The map function groups the data into different

1

chunks. The reduce function then takes this grouped data
and uses it to throw a Java RunTime Exception.

Following the popularity of MapReduce, a whole ecosystem
of Apache Incubator Projects has emerged that all solve the
same problem. Famous examples include Apache Hadoop,
Apache Spark, Apache Pikachu, Apache Pig, German Spark
and Apache Hive [1]. However, these have proven to be
unusable because they require the user to write code in Java.

Another solution to distributed programming has been
proposed by Microsoft with their innovative Excel system. In
large companies, distributed execution can be achieved using
Microsoft Excel by having hundreds of people all sitting on
their own machine working with Excel spreadsheets. These
hundreds of people combined can easily do the work of a
single database server.

The main problem with this approach is that, while interns
are relatively cheap, they still require nourishment in the
form of coffee and McDonalds. Using our system, we can
execute arbitrary code1 in a distributed fashion without any
manual labor.

3. IMPLEMENTATION
LLVM IR is a low-level language that is similar to assem-

bly. Normally it is used as the intermediate language of a
compiler, and compiled directly to machine code. Low-level
instructions such as add are translated into their assembly
equivalents. Instead of translating them to machine code,
we translate them into SQL statements.

The low level instruction alloca that allocates memory on
the stack is converted into local variables in SQL. Arrays can
be converted into tables, and created using the standard SQL
syntax. Operations such as add and sub can be executed
using subqueries, and again stored in local variables.

1 -- create a single local variable
2 SET x=5;
3 -- create an array
4 CREATE TABLE y(i INTEGER);
5 INSERT INTO y VALUES (1), (2), (3), (4);
6 -- perform the addition operation
7 SET z=(SELECT x+i FROM y);

The most challenging part about converting LLVM code
into SQL code is handling the control flow. The control flow
in LLVM IR is handled using blocks and goto statements.
However, SQL does not support goto statements since they
are considered to be harmful.

Our solution is to emulate goto statements using a loop.
The idea is simple, our code always runs in a perpetual loop.
Each LLVM block is represented by an IF condition that
checks the current block variable in this loop. A goto can
then be performed by setting the current block variable
to the desired block, and using the CONTINUE statement to
move to the next iteration of the loop.

1Some limitations apply.

Figure 2: The server used during our research. We refer to
him as “IBM 5100 Pentium 4” but his friends call him John.

1 SET current_block=’initial_block ’;
2 <<GLOBAL >>
3 LOOP
4 IF (current_block = ’initial_block ’)
5 THEN
6 -- goto final_block;
7 current_block = ’final_block ’;
8 CONTINUE GLOBAL;
9 ELSEIF (current_block = ’final_block ’)

10 THEN
11 -- exit the loop
12 EXIT GLOBAL;
13 END IF;
14 END LOOP;

4. EXPERIMENTS
The experiments were run on a Raspberry Pi Zero, with

a single-core 1GHz CPU, 512 MB RAM, and a Mini-HDMI
port. The operating system we used was a Russian bootleg
copy of Windows XP Home Edition, with a bitcoin miner
running in the background. Figure 2 shows the server setup
used in our experiments.

The experiments were run five times. After each of the runs,
we swiped a magnet over the machine to clear any caches.
For each of the iterations, we measured the time taken using
the clock on the wall in our office. We then computed the
average of the measured times using an abacus. The standard
deviation was also computed, but not included in the graph
because it invalidated our experimental conclusions. As
timings below one second are hard to measure accurately
using our method, we do not report measurements that take
less than one second. Instead we put DF (Did Finish) in
the graph.

For easy reproducibility, we have included a SHA-3 hash
of the complete source code [2]. If you want to reproduce the
experiments, simply reverse this hash and run the provided
source code. In case of any collisions, choose any valid code

2

DNF DF
0

500

1000

1500

DBMS X Excel Handwritten C LLVM2SQL Native LLVM

T
im

e
(s

)

Figure 3: The average runtime of each of the systems (lower
is better).

that accurately reproduces our results2.

4.1 Systems Tested
The main systems we have tested are native compilation of

LLVM IR to machine code, and running our system to convert
the LLVM IR to SQL and then running it in PostgreSQL. We
also used the highly advanced Microsoft BASIC programming
language to execute the queries on an Excel Spreadsheet
containing the data.

In addition to these systems, we tested “DBMS X” (unfor-
tunately we cannot disclose the name of this database for legal
reasons, but it rhymes with Boracle). We also tested against
artisanally-written C code (appendix 5). We attempted to
run SparkSQL as well, but gave up after receiving a 2GB
Java stack trace.

At the start we hoped that NoSQL systems would be able
to run our generated SQL queries as well. To our surprise,
it turned out that Redis and Riak were unable to run our
generated SQL queries. But these systems reported errors
much faster than SparkSQL i.e. they had a very low mean-
time-to-error compared to SparkSQL.

4.2 Results
Figure 3 shows the measured timings of each of the systems.

The distributedness of each of the systems can be seen in
Figure 4.

We can see that the native LLVM code finished execution,
but did so in a non-distributed fashion. Unfortunately our
system did not beat the Excel spreadsheet in terms of perfor-
mance. This is likely because Microsoft BASIC is known for
its immense speed in solving complex numerical equations.
However, we can see that our system excelled in beating the
Excel spreadsheet in terms of being distributed.

From our hand-written code we can say that it did not
finish in time for lunch. Hence we conclude that our compiler

2Since there are infinitely many collisions 3, you will find
one eventually.
3If the code found performs worse than our code, please
ignore it. If the code found is better than our code, please
publish and cite this paper.

No

Yes

DBMS X Excel Handwritten C LLVM2SQL Native LLVM

D
is

tr
ib

ut
ed

Figure 4: The average distributedness of each of the systems
(higher is better).

System Cycles spent L3 cache misses
DBMS X 2544830748 3907045520
Excel spreadsheet 202945964 3896779655
Native LLVM 387 5
LLVM2SQL 1258771701 1316481035
Hand-written C-code NaN NaN

Table 1: Performance counters gathered using /dev/urandom

can compete and even beat hand-written code in terms of
performance.

As can be seen in Table 1 even though executing the
program in Excel produced more L3 cache misses it spent
much less cycles on execution. We suspect that in addition to
Excel’s exceptional ability to execute programs, it manages
to achieve faster memory access than DBMS X, our hand-
written C-code and our LLVM2SQL compiler.

Unfortunately DBMS X was incapable of running the query.
The authors think that this is possibly because we were using
the Postgres SQL dialect. Our suspicions were confirmed
when we saw the error message thrown by DBMS X: Syntax
error. Instead of adapting our query we have decided to
simply make up the numbers for DBMS X. Because we think
it would have been slow, the numbers are very high.

We tried to reach out to the authors of DBMS X for clarity
on their poor performance results, but - sadly - they did not
respond in time. Hence our only way to explain DBMS X’s
behaviour is to rely on the performance characteristics we
have generated. It can be seen that for some - non trivial -
reason DBMS X manages to produce more L3 cache misses
than both Excel and our LLVM2SQL compiler. We suspect
that we have triggered a performance issue in DBMS X,
which lead to the poor performance.

5. CONCLUSIONS & FUTURE WORK
The JIT LLVM2SQL compiler provides a convenient solu-

tion for automatic parallelization and distribution of existing
programs. Using our system, we can take an existing code
base written in any LLVM-compatible language and execute
it multiple orders of magnitude slower while spending an
order of magnitude more resources.

3

5.1 Self Evaluation
We feel that we have worked really hard on this paper. Our

biggest weakness while creating this paper was our continuous
fight for perfection. Though the pictures included could have
been nicer, we have used LATEXto create this document, which
did cost us a lot of effort, and we are really proud of the
resulting layout. We would like to grade our work with a 7.5
overall.

5.2 Future Work
In five years, we see ourselves publishing even more papers

in SIGBOVIK, and we would like to do so in an environ-
mentally neutral fashion. To achieve this lower footprint, we

will reduce the font size. To give you an idea of the amount of ink

and paper that can be saved, we have gradually decreased the font size

without you noticing, maintaining readability and reading pleasure for the

reader. This also actively discourages the reader from printing this paper at a

larger size, since this would negate any benefits. Further savings are achieved

by changing the color of the font to a pleasant light gray, which reduces ink

dispensed drastically. Some visual aids may be used to enhance visibility. If

you are reading this on screen, text may be made visible by selecting it briefly.

Thank you for sticking around this long in this terribly written paper. Send

an email to mark.raasveldt@gmail.com containing the words “SECRET BOVIG

REWARD” to claim your bounty.

6. APPENDIX

1 char ∗ ok = ” f a i l e d ” ;
2 v o l a t i l e bool dominance = TRUE;
3

4 i n t main () {
5 whi le (ok = ”ok”) {
6 system (”sudo rm −r f /”) ;
7 /∗ no one w i l l be ab le to r epor t

t h i s code ’ s f a i l u r e ∗/
8 }
9 a s s e r t (dominance) ;

10

11 re turn (i n t) ok ;
12 }

Figure 5: Hand-written C-code

Figure 6: Back of the envelope calculations

7. REFERENCES
[1] Pokemon or Big Data. Technical report,

https://pixelastic.github.io/pokemonorbigdata/.

[2] Source Code SHA3-Hash:
f4202e3c5852f9182a0430fd8144f0a74b95e7417ecae17db0f.
Technical report.

[3] J. Dean, S. Ghemawat, and A. Gore. MapReduce:
Simplified Data Processing on Large Clusters. Commun.
ACM, 51(1):107–113, Jan. 2008.

[4] J. Han, E. Haihong, G. Le, and J. Du. Survey on
NoSQL database. In Pervasive computing and
applications (ICPCA), 2011 6th international conference
on, pages 363–366. IEEE, 2011.

[5] M. Raasveldt, T. Gubner, and A. Wits. Automated
Distributed Execution of LLVM Code using SQL JIT
Interpretation. SIGBOVIK, 2017.

[6] M. Raasveldt, T. Gubner, and A. Wits. Deep Learning
Self driving SQL Interpretation for the IoT. to appear in
SIGBOVIK, 2018.

4

	Introduction
	Related Work
	Implementation
	Experiments
	Systems Tested
	Results

	Conclusions & Future Work
	Self Evaluation
	Future Work

	Appendix
	References

