
Don’t Hold My UDFs Hostage - Exporting UDFs For
Debugging Purposes

Pedro Holanda1, Mark Raasveldt1, Martin Kersten1

1 Centrum Wiskunde & Informatica (CWI)
Amsterdam, The Netherlands

{holanda,m.raasveldt,mk}@cwi.nl

Abstract. User-defined functions (UDFs) are an integral part of performing in-
database analytics. Executing data analysis inside a database provides signif-
icant improvements over traditional methods, such as close-to-the-data execu-
tion, low conversion overhead and automatic parallelization. However, UDFs
have poor support for debugging. Since they are executed from within the
database process, traditional debugging tools such as Integrated Development
Environments (IDEs) and Read-Eval-Print Loops (REPLs) cannot be used dur-
ing development. As a result, writing functional UDFs is challenging. In this pa-
per, we present an extension to the open-source database system MonetDB that
allows developers to debug their UDFs using modern debugging techniques.

1. Introduction

Data scientists rely on scripting languages, such as R and Python, to perform data analysis
tasks. Combining these languages with a database has many advantages. The traditional
method of using a database in conjunction with these scripting languages is to connect
to a database using a client protocol. The data is then transferred from the database to
the analytical tool. However, this is very inefficient when dealing with large amounts of
data [Raasveldt and Mühleisen 2017].

In-database analytics promises to solve this issue. By performing the analytics in-
side the database, the data transfer overhead is mitigated [Raasveldt and Mühleisen 2016].
The primary way of performing in-database analytics is through the use of UDFs. As
shown in Table 1, most database vendors support UDFs in at least one scripting language
frequently used for analysis.

While UDFs can perform highly efficient data analysis, debugging them has been
a long-standing problem. Because the UDFs are executed within the database server,
developers cannot use sophisticated debugging techniques (e.g., Interactive Debugging).
Instead, they have to resort to inefficient debugging strategies in an effort to make their
code work.

With the increasing number of R and Python packages, these analytical programs
are quickly growing in complexity and scope. Finding and correcting bugs in complex
programs is a challenging and time consuming task. In some cases this can take up to
50% of development time [Hailpern and Santhanam 2002]. However, when using more
primitive debugging techniques, such as print or log-file debugging, this can take even
longer.

Table 1. DBMSs Support for UDFs
DBMS Python R

Greenplum X X
DB2 - -

MonetDB X X
MySQL - -
Oracle - X

PostgreSQL X X
Redshift X -
SQL Server X X
SQLite X -
Vertica - X

In this paper, we propose a solution to this problem. From within a client con-
nected to a database, we ask the user to provide us with a problematic SQL statement
that they want to debug. We then analyze it, and extract any required input data from
the database server. We transfer the input data and the source code of the UDF to the
client. Finally, we execute the function in the client process exactly as it would have been
executed in the database server. The developer can then easily use interactive debugging
tools to aid him in creating and modifying the UDFs.

The main contributions of this paper are:

• We introduce a novel strategy that allows developers to use interactive debugging
techniques in conjunction with UDFs.
• We provide an Open-Source implementation of our work for the popular database

MonetDB.
• We show our debugging framework being used for a concrete use-case, and com-

pare it against the old ways of debugging UDFs.

Outline. This paper is organized as follows. Section 2 discusses the main debug-
ging techniques and the state-of-the-art debugging for scripting UDFs. In Section 3 we
describe our solution and demonstrate a concrete use-case that shows the difficulties of
Python UDF debugging. In Section 4 we present our conclusions and discuss future work.

2. Background & Related Work
Debugging is the process of localizing, classifying, understanding and repairing an er-
ror in a piece of software. Many debugging techniques have been developed and are
frequently used in the software development process [McConnell 2004]. The most com-
monly used debugging techniques are:

• Print Debugging. The developer adds print statements to the code in order to
track the values of different variables while the code is running. This technique
has several disadvantages. The developer needs to decide upfront which variables
he wants to track and where he wants to track them. If the developer later decides
that different variables should be tracked, he needs to recompile and rerun the
code. Another disadvantage is that temporary code has to be inserted into the
software, that then need to be removed after fixing the bug. Print debugging also

works poorly in multithreaded programs, because print statements from different
threads get mixed in the output stream.
• Log-File Debugging. Log-File debugging is similar to print debugging, however,

instead of writing to a standard output stream the developer writes output to a log-
file. This has an advantage over print-debugging, in that log files are kept around
even after the console has been closed. However, it still suffers from many of the
same problems as print-debugging, as it requires the source code to be altered by
the programmer upfront.
• Interactive Debugging. Interactive debugging allows the developer to inspect the

state of a program while it is running. It allows the developer to work interactively
with the source code, printing any variables he thinks are relevant to the program,
and even stepping through the code line-by-line. Certain interactive debuggers
even allow the developer to change the source code while the program is running.
This form of debugging can be used without any modification to the source code.
The developer only needs to attach a debugger to a running program to start his
debugging session.

Scripting languages have several popular interactive debugging tools. The two
main types of tools are console debugging (i.e. REPLs) and IDEs. Python has many dif-
ferent options for both REPLs and IDEs, such as pdb1, IPython[Pérez and Granger 2007],
PyDev2 and PyCharm3. However, these cannot be used together with UDFs because these
debugging tools need to control the code execution. This is not possible for code that runs
within a database process, since the database controls the code flow. Consequently, de-
velopers of UDFs are forced to use either print or log-file debugging.

3. Debugging UDFs
The main issue with using interactive debuggers in conjunction with UDFs is that the

execution of the UDFs happens inside the database server. To control the execution of the
UDF, the debugger needs to be in control of the code. Hence, client-local execution of
UDFs is necessary.

To accomplish client-local execution we transfer the UDF from the database server
to the clients’ machine and execute it in the local environment. A challenge here is that
errors can be data-dependent, and the input data of the UDFs depend on the query that
the UDF is used in. Consequently developers of UDFs often want to debug their UDFs
in the context of a specific SQL query. To facilitate this, we allow developers to input an
arbitrary SQL query that involves a call to the UDF they want to inspect. Both the UDF
and the required input data are then transferred from the database and sent to the client.
Afterwards they are either exported to a file for use in external IDEs, or directly executed
in an interactive debugger.

The problem with transferring the input data of UDFs from the database to the
client is that the amount of data can be very large. This is only required for debugging,
however. The actual execution of the UDFs still occurs completely inside the database
server. Still, it is possible that the clients’ machine does not have space for all the required

1https://docs.python.org/2/library/pdb.html
2www.pydev.org
3www.jetbrains.com/pycharm

input data. For this reason, we also introduce an optional sampling step that only transfers
a uniform random sample of the data instead of the full input data set.

Listing 1 depicts an example of a UDF that is supposed to compute the mean
absolute deviation of a given column using the following formula:

mean deviation(X) =

∑
|X −X ′|
N

where X represents a column, X’ the columns’ mean value and N the columns’ size. How-
ever, the example has a bug. On line 9, the regular difference is calculated instead of the
absolute difference, producing a semantic error (i.e., syntactically correct but logically
incorrect). This bug can be fixed by computing the absolute difference instead. How-
ever, to locate the bug, the developer must inspect the values of variables throughout the
programs’ execution.

Listing 1. Mean Deviation UDF

1 CREATE FUNCTION mean_deviation(column INTEGER)
2 RETURNS DOUBLE LANGUAGE PYTHON {
3 mean = 0
4 for i in range (0, len(column)):
5 mean += column[i]
6 mean = mean / len(column)
7 distance = 0
8 for i in range (0, len(column)):
9 distance += column[i] - mean

10 deviation = distance/len(column)
11 return deviation;
12 };

To use print debugging to locate the error, the developer must alter the original source
code. The source code must be modified to include print statements that track variable
changes. Using Listing 1 as an example, print statements could be introduced after line
6 and 10 to track the mean and distance variables respectively. This solution requires
many iterations, placing the print statements in different positions and tracking different
variables. Each iteration includes a modification to the source code and requires rerunning
of the function, which can be very time consuming. Finally, after finding and fixing the
bug, the print statements must be removed.

We can see that print debugging is very cumbersome, and requires rerunning the
query multiple times before the bug is found, even in this simple example. Listing 2
depicts how the developer can debug this function using our solution. First, the devel-
oper connects to a running database using the Python client (pymonetdb4 for MonetDB).
Then, the developer creates a SQL query involving the UDF, just as he would if he were
to normally execute the query. However, instead of executing it, he calls either the debug
function (line 5) for console debugging or the export function (line 6) for IDE debug-
ging.

4https://pymonetdb.readthedocs.io/

Listing 2. Debugging UDF through pymonetdb
1 import pymonetdb
2 conn = pymonetdb.connect(database=’demo’)
3 c = conn.cursor()
4 sql = ’select mean_deviation(id) from tables;’
5 c.debug(sql, ’mean_deviation’)
6 c.export(sql, ’mean_deviation’)

The debug function directly executes the UDF inside the client environment and
attaches an interactive console debugger (pdb) to the UDF. The developer can then use
the debugger to step through the code, and obtain the values of variables throughout the
codes’ execution. In addition, the developer can set breakpoints or watchpoints to auto-
matically monitor changes to variables.

The export function writes the UDF and the input data to a file, which can then
be inspected by the developer and imported into an IDE of his choice. The IDE can then
be used to interactively debug the function and step through the code.

Both functions take an optional sample parameter, that can be used to control the
maximum allowed input size. This way, transfer of a large amount of data to the client
can be avoided.

Loopback Query UDF
MonetDB/Python supports loopback queries inside UDFs. Loopback queries allow users
to query the database directly from within the UDF. The results of the query are converted
to the host language of the UDFs. In Python UDFs, they can be can used through the
conn object that is passed to every UDF. Loopback queries are useful because they

can bypass cardinality restrictions of the relational querying model. Listing 3 depicts an
example of a UDF that uses a loopback query to retrieve a classifier from the database,
and subsequently uses the classifier on its input data.

Listing 3. Loopback Queries
1 CREATE FUNCTION classify(id INTEGER, value INTEGER)
2 RETURNS TABLE(id INTEGER, prediction STRING)
3 LANGUAGE PYTHON
4 {
5 import pickle
6 res = _conn.execute("SELECT * FROM classifier WHERE name=’RFC’;")
7 classifier = pickle.loads(res[’classifier’][0])
8 return {’id’: id, ’prediction’: classifier.predict(value) }
9 };

Loopback queries are a challenge for client-local execution. Because the UDF no
longer runs inside the database, it cannot be queried in the same fashion, hence they have
to be modified to work in this scenario. One solution would be to run all the loopback
queries when exporting the function and retrieving their results in addition to the input
data of the UDF, however, this will not work in all scenarios because the queries them-
selves are not required to be constant and might depend on external data. Instead, the
actual loopback queries must be issued to the database when the UDF is running. This
can be done by maintaining an open client connection to the database during client-local
execution.

Extending to Other Databases

Our solution is implemented for MonetDB/Python. The same implementation strategy
can be used for other RDBMSes by extending their respective clients. However, the pro-
cessing model of the respective database needs to be taken into consideration. MonetDB
uses the operator-at-a-time processing model, which means the UDFs are only called once
with the entire columns as input. Row-store databases (e.g. Postgres or MySQL) use the
tuple-at-a-time processing model, under which the UDFs are called many times with only
individual rows as input. As this changes the way UDFs are called, the debugging frame-
work must be adapted to these differing processing models.

4. Conclusions & Future Work
In this paper, we identify the problem of debugging scripting language UDFs in databases
and propose two different solutions to allow developers to quickly and easily debug UDFs
using modern techniques. The developer provides a problematic SQL query in which the
UDF is executed, after which we export the UDF and any required data from the database
so it can run locally in an interactive debugger on the developers’ machine.

Future Work.

In our current solution, the UDFs and required data are exported so they can be debugged
outside the database. However, this introduces both security and performance issues. A
way to solve this issue is to run the debugger directly in the database. Another possibility
of future work would be the development of an IDE plugin that easily allows the user to
export, import and modify his UDFs.

Acknowledgments

This work was funded by the Netherlands Organisation for Scientific Research (NWO),
projects “Data mining on high volume simulation output” (Holanda) and “Process mining
for multi-objective online control” (Raasveldt).

References
Hailpern, B. and Santhanam, P. (2002). Software debugging, testing, and verification.

IBM Systems Journal, 41(1):4–12.

McConnell, S. (2004). Code complete. Pearson Education.

Pérez, F. and Granger, B. E. (2007). IPython: a system for interactive scientific comput-
ing. Computing in Science and Engineering, 9(3):21–29.

Raasveldt, M. and Mühleisen, H. (2016). Vectorized udfs in column-stores. In Pro-
ceedings of the 28th International Conference on Scientific and Statistical Database
Management, SSDBM 2016, Budapest, Hungary, July 18-20, 2016, pages 16:1–16:12.

Raasveldt, M. and Mühleisen, H. (2017). Dont hold my data hostage-a case for client
protocol redesign. Proceedings of the VLDB Endowment, 10(10):1022–1033.

