
Vectorized UDFs in Column-Stores

Mark Raasveldt
CWI

Amsterdam, the Netherlands
m.raasveldt@cwi.nl

Hannes Mühleisen
CWI

Amsterdam, the Netherlands
hannes@cwi.nl

ABSTRACT
Data Scientists rely on vector-based scripting languages such
as R, Python and MATLAB to perform ad-hoc data anal-
ysis on potentially large data sets. When facing large data
sets, they are only efficient when data is processed using vec-
torized or bulk operations. At the same time, overwhelm-
ing volume and variety of data as well as parsing overhead
suggests that the use of specialized analytical data manage-
ment systems would be beneficial. Data might also already
be stored in a database. Efficient execution of data analy-
sis programs such as data mining directly inside a database
greatly improves analysis efficiency.

We investigate how these vector-based languages can be
efficiently integrated in the processing model of operator–
at–a–time databases. We present MonetDB/Python, a new
system that combines the open-source database MonetDB
with the vector-based language Python. In our evaluation,
we demonstrate efficiency gains of orders of magnitude.

CCS Concepts
•Information systems → Database query processing; Re-
lational parallel and distributed DBMSs; Query languages;

Keywords
Databases, User-Defined Functions, Column-Stores, Operator–
at–a–Time Processing

1. INTRODUCTION
Transferring large amounts of data from a data manage-

ment system for analysis purposes quickly becomes ineffi-
cient. Instead of transferring the data to the application,
complex operations can be performed directly in the database.
This can significantly improve performance, as the raw data
does not have to leave the database server. Instead, only
the necessary results are shipped back to the client.

However, most data analysis, data mining and classifica-
tion operators are difficult and inefficient to express in SQL.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SSDBM ’16 Budapest, Hungary
c© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4215-5/16/07. . . $15.00

DOI: http://dx.doi.org/10.1145/2949689.2949703

0 100 200 300 400 500 600 700
N

a
ti

v
e

P
L/

P
y
th

o
n

547s

31.4s

Figure 1: Modulo computation in Postgres.

The SQL standard describes a number of built-in scalar
functions and aggregates, such as AVG and SUM [9]. How-
ever, this small number of functions and aggregates is not
sufficient to perform complex data analysis tasks [17].

Database vendors often ship their own set of functions in
addition to the functions defined by the standard. However,
there are such a large number of specialized functions and
aggregates used by data scientists that adding all possible
functions required by them is infeasible [17].

Instead of using standard SQL queries, application logic
can be executed in the database server through the use of
stored procedures. Many database vendors provide procedu-
ral (turing-complete) extensions to SQL, such as Oracle’s
PL/SQL and Postgres’ PL/pgSQL. However, many scien-
tific and analytical algorithms are too complex to be imple-
mented in SQL, even with these procedural extensions.

In addition to stored procedures, the SQL standard de-
fines external routines or user-defined functions. These are
stored routines implemented in different programming lan-
guages. Typically, databases support user-defined functions
in compiled languages, such as C, C++ or JAVA. While
user-defined functions written in these languages are effi-
cient and flexible, they require the user to have in-depth
knowledge of the specific database kernel they are written
for, and as such are not easily portable to other databases
or applications.

Many data scientists also do not use compiled languages
such as C or Java to perform analytical data processing. In-
stead, they rely on interpreted languages such as R, Python
or MATLAB [12] as there are large bodies of existing code
that allow researchers to easily perform data science tasks.

Making user-defined functions available in these interpreted

languages solves the above issues. By converting the data
from the unique representation used by the database to a
standard representation in an interpreted language, the user
does not require in-depth knowledge of the database kernel
to write these functions. And as these languages are inter-
preted, they do not need to be compiled and linked against
the database server.

However, there are several issues that must be solved to
efficiently use these vector-based languages as user-defined
functions. If we were to simply use them as a one–to–one
replacement for compiled languages such as C or Java the
functions will have very poor performance. While compiled
languages are very efficient when operating on individual el-
ements, these interpreted languages are not. In interpreted
languages actions that are normally performed while compil-
ing, such as type checking, are performed at run-time. This
interpreter overhead is performed before every operation,
even before simple operations such as addition or multiplica-
tion. For many of these operations, this overhead dominates
the actual cost of the operation. As a result, operations per-
formed on individual elements are very inefficient.

This issue is demonstrated in Figure 1, where we compute
the modulo of 1 GB of integers using both Postgres’ built-in
modulo function and a Python UDF in Postgres. We can
see that the interpreter overhead results in the Python UDF
taking much longer to perform the exact same operation.

Instead, these interpreted languages rely on vectorized op-
erations for efficiency. Rather than operating on individual
values, these operations process arrays directly. When using
these vectorized operations the interpreter overhead is only
incurred once for every array, rather than once for every
value. By using vectorized operations they can process data
as efficiently as compiled languages. However, we can only
use these vectorized operations if we have access to chunks
of the data at the same time. This does not fit into the way
user-defined functions are typically processed in databases.
Rather than processing one row at a time, they have to pro-
cess multiple rows or even entire tables at the same time to
operate efficiently.

In this paper, we investigate how vector-based languages
can be efficiently integrated into the processing model of a
database. We present our system, MonetDB/Python. In
this system, we combine the open-source database system
MonetDB with the interpreted language Python in an effi-
cient way. We show how Python UDFs can be as efficient
as UDFs in compiled languages, without any of the pitfalls
that make compiled language UDFs hard to use.

MonetDB/Python is open-source. The source code is freely
available online in the official MonetDB source code reposi-
tory 1.

Contributions. The main contributions of this paper
are as follows.

• We demonstrate that naively executing vector-based
languages in a non-vectorized fashion is detrimental to
performance.

• We discuss how vector-based languages can be inte-
grated into various database processing engines, and
how various database architectures influence the per-
formance of user-defined functions in vector-based lan-
guages.

1https://dev.monetdb.org/hg

• We describe our system, MonetDB/Python, that effi-
ciently integrates vectorized user-defined functions into
the column-store operator–at–a–time database Mon-
etDB. We describe how these user-defined functions fit
into the processing model of the database, and show
how these functions can be automatically parallelized
by the query execution engine of the database server.

• We compare the performance of our implementation
with in-database processing solutions of alternative open-
source database systems, and demonstrate the effi-
ciency of vectorized user-defined functions. We show
that vectorized user-defined functions in interpreted
languages can be as fast as user-defined functions writ-
ten in compiled languages, without requiring any in-
depth knowledge of database kernels and without need-
ing to compile and link them to the database server.

Outline. The paper is organized as follows. In Sec-
tion 2, we review different types of user-defined functions
and the influence of database architectures on user-defined
functions. In Section 3, we present a brief background of
both systems used. In Section 4, we present our system,
MonetDB/Python.In Section 5, we show the results of a
set of benchmarks that compare the performance Monet-
DB/Python functions against user-defined functions in dif-
ferent languages and different databases. In Section 6, we
present related work. In Section 7, we describe how our work
could be applied to other databases. Finally, in Section 8,
we draw conclusions and discuss future work.

2. BACKGROUND
While all user-defined functions avoid unnecessary data

transfer from the database to the client, the flexibility, ease
of use and performance of these user-defined functions varies
greatly. In this section we will give a brief overview of the
different types of user-defined functions. In addition, we will
give an overview of various different database architectures,
and how these differences influence the performance and ca-
pabilities of user-defined functions.

2.1 Types of User-Defined Functions
User-defined functions can be used for a variety of dif-

ferent purposes, but what all user-defined functions have in
common is that they interact with the data in the database
in some fashion. They take data from the database as in-
put, process that data and then output the processed data.
The processed data can then be stored in the database or
used in subsequent queries. UDFs differ in how many input
values they can process at a time, how many input columns
they can handle, and how many columns or rows they can
output.

User-Defined Scalar Functions are n-to-n operations
that operate on an arbitrary number of input columns and
output a single column. These functions can be used in the
SELECT and WHERE statements of a SQL query. An ex-
ample of a scalar user-defined function is the multiplication
of two columns i ∗ j.

User-Defined Aggregate Functions are n-to-g opera-
tions that perform some aggregation on the input columns,
possibly over a number of groups with the GROUP BY state-
ment. An example of an aggregate user-defined function is
the MAX function, that returns the maximum of all the values
in a column.

User-Defined Table Functions are operations that do
not return a single column, but rather return an entire table
with an arbitrary number of columns. The possible input
of table creating functions vary depending on the database.
Certain databases only support the input of scalar values,
whereas others support the input of an arbitrary amount of
columns.

2.2 Physical Database Storage
The physical layout of the database influences the way in

which the database can load and process data, and can sig-
nificantly influence the performance of the database system
when the user-defined function only uses a small amount
of the input columns. The different physical layouts of
database systems are shown in Figure 2.

Row Storage Databases fragment tables horizontally.
In this storage model, the data of a single tuple is tightly
packed. The main advantage of this approach is that up-
dates to individual tuples are very efficient, as the data for a
single tuple is tightly packed at a single location. However,
columns cannot be loaded individually from disk because
the values of a single column are surrounded by the values
of the other columns.

As row-stores can only load entire tables, unused columns
will affect query performance. When a query only operates
on a subset of the columns of a table, the entire table must
be loaded. This is especially relevant for analytical functions
that only touch a few columns in large tables with hundreds
or even thousands of columns.

Column Storage Databases fragment tables vertically.
In this storage model, the data of the individual columns is
tightly packed. The main advantage of this approach is that
columns can be loaded and used individually, which means
we do not need to load in any unused columns. However,
operations on individual tuples are inefficient because they
are spread across the different columns.

2.3 Database Processing Model
The processing model of the database heavily influences

the design and performance of the user-defined functions,
as the processing model defines how the data is transferred
between the database and the user-defined function. The
processing model is closely related to the physical storage of
the database.

Tuple-at-a-Time Processing is the standard process-
ing model used by most row-oriented databases. In this
processing model, the individual rows of the database are
processed one by one from the start of the query to the end
of the query.

User-defined functions in tuple–at–a–time databases typ-
ically follow this processing model. As input, they receive a
single row and process this row, then output the processed
row again.

This approach lends itself well to user-defined scalar func-
tions, but has to be adapted for user-defined aggregate func-
tions. As aggregate functions depend on the values of the
entire column, rather than only on the values of a single row.

User-defined aggregate functions have to either be com-
puted incrementally, or the data from the relevant columns
has to be gathered at a single location. Incremental com-
putation is only possible for simple aggregates such as the
MAX function. For more complex aggregates, such as the ME-

DIAN, the database must first iterate over the data and copy

the relevant columns to a separate storage location before
computing the aggregate.

The main disadvantage of the tuple–at–a–time processing
model is the function call overhead incurred for comput-
ing the individual rows. Every step in the query execution
requires one function call for every tuple. This overhead
is significant even in compiled languages. For vector-based
languages, this overhead is so large that it makes processing
large amounts of data an impossibility.

Pipeline Processing is the processing model used by the
hybrid OLTP/OLAP database HyPeR [15]. The pipeline
processing model is similar to the tuple–at–a–time process-
ing model, in that it maximizes data locality by processing
one tuple at a time.

However, unlike standard tuple–at–a–time processing mod-
els, it avoids the per-tuple function call overhead by gener-
ating code. While this adds additional compilation over-
head to queries, the reduced function-call overhead results
in faster query execution time.

Operator–at–a–Time Processing is an alternative query
processing model. Instead of processing the individual tu-
ples one by one, the individual operators of the query are
executed on the entire columns in order. As the operators
process entire columns at a time, the function call overhead
of this processing model is minimal.

In the operator–at–a–time processing model, user-defined
functions are called once with all the data is input, rather
than n times with a single row as input.

In this processing model there is no difference in how user-
defined scalar, aggregate and table functions are processed.
As user-defined functions always have access to the entire
input columns, there is no need to distinguish between func-
tions that require access to all the data, and functions that
only operate on part of the data.

The main drawback of this processing model is the mate-
rialization cost of the intermediates of the operators. In the
tuple-at-a-time processing model, a single tuple is processed
from start to finish before the query processor moves on to
the next tuple. By contrast, in the operator–at–a–time pro-
cessing model, the operator processes the entire column at
once before moving on to the next operator. Because of this,
the intermediate result of every operator has to be materi-
alized into memory so the result can be used by the next
operator. As these intermediate results are the result of an
entire column being processed they can take up a significant
amount of memory if they are not compressed.

Vectorized Processing is a hybrid processing model
that sits between the tuple-at-a-time and the operator–at–a–
time models. It avoids high materialization costs by operat-
ing on smaller chunks of rows at a time, while also avoiding
overhead from a significant amount of function calls. This
approach is used by Vectorwise [4] and Vertica [13].

User-defined functions in this processing model are similar
to user-defined functions in the tuple–at–a–time processing
model. User-defined scalar functions fit directly into this
processing model. However, aggregate functions that need
access to the entire column force the database to copy and
gather the input columns to a single location.

3. COMPONENTS
MonetDB/Python combines the relational database Mon-

etDB with the interpreted language Python. In this section,
we will provide a brief background on both these systems.

(a) Column-Store with virtual identifiers. (b) Column-Store with explicit identifiers. (c) Row-Store.

Figure 2: Physical layout of column-store and row-store databases.

3.1 MonetDB
MonetDB is an open source column-store RDBMS that

is designed primarily for data warehouse applications. In
these scenarios, there are frequent analytical queries on the
database, often involving only a subset of the columns of the
tables, and unlike typical transactional workloads, insertions
and updates to the database are infrequent and in bulk or
do not occur at all.

MonetDB is tuned for these analytical workloads by ver-
tically fragmenting the data. This design allows operations
within the database to operate on individual columns.

Every relational table is stored as a set of Binary Asso-
ciation Tables (BATs). Every column in the table is repre-
sented by a single BAT. The BAT stores the column as a set
of oid-value pairs, where the oid (object-id) describes which
row the value belongs to, and the value contains the actual
value for the field.

The oid of each value is not stored explicitly in MonetDB,
but rather implicitly, as shown in Figure 2a. This is accom-
plished by only storing the oid of the first element, oidbase,
and ensuring that the subsequent values have incremental
oids. The oid of the ith value is then oidbase + i.

The physical storage model is not the only way in which
MonetDB is optimized for analytical queries. The entire
execution model of the database is designed around late tu-
ple reconstruction [8]. MonetDB processes the data in an
operator–at–a–time manner, and only reconstructs the tu-
ples just before sending the final result to the client. This
approach allows the query engine to use vectorized operators
that process entire columns at a time.

3.2 Python
Python is a popular interpreted language, that is widely

used by data scientists. It is easily extensible through the
use of modules. There are a wide variety of modules avail-
able for common data science tasks, such as numpy, scipy,
sympy, sklearn, pandas and matplotlib. These modules of-
fer functions for high performance data analytics, data min-
ing, classification, machine learning and plotting.

While there are various Python interpreters, the most
commonly used interpreter is the CPython interpreter. This
interpreter is written in the language C, and provides bind-
ings that allow users to extend Python with modules written
in C.

Internally, CPython stores every variable as a PyObject.
In addition to the value this object holds, such as an integer

or a string, this object holds type information and a refer-
ence count. As every PyObject can be individually deleted
by the garbage collector, every Python object has to be in-
dividually allocated on the heap.

The internal design of CPython has several performance
implications that make it unsuitable for working with large
amounts of data. As every PyObject holds a reference count
(64-bit integer) and type information (pointer), every object
has 16 bytes of overhead on 64-bit systems. This means that
a single 4-byte integer requires 20 bytes of storage. In addi-
tion, as every PyObject has to be individually allocated on
the heap, constructing a large amount of individual Python
objects is very expensive.

Instead of storing every individual value as a Python ob-
ject, packages intended for processing large amounts of data
work with NumPy arrays instead. Rather than storing a sin-
gle value as a PyObject, a NumPy array is a single PyObject
that stores an array of values. This makes this overhead less
significant, as the overhead is only incurred once for every
array rather than once for every value.

This solves the storage issue, but standard Python func-
tions can only operate on PyObjects. Thus if we want to ac-
tually operate on the individual values in Python, we would
still have to convert each individual value to a PyObject.

The solution employed in Python (and other vector-based
languages) is to have vectorized functions that directly op-
erate on all the data in an array. By using these functions,
the individual values are never loaded into Python. Instead,
these vectorized operations are written in C and operates
directly on the underlying array. As these functions operate
on large chunks of data at the same time they also make
liberal use of SIMD instructions, allowing these vectorized
functions to be as fast as optimized C implementations.

4. MONETDB/PYTHON
In this section we describe the internal pipeline of Mon-

etDB/Python functions. We describe how the data is con-
verted from the internal database format to a format usable
in Python, and how these functions are parallelized.

4.1 Usage
As MonetDB/Python functions are interpreted, they do

not need to be compiled or linked against the database.
They can be created from the SQL interface and can be im-
mediately used after being created. The syntax for creating
a MonetDB/Python function is shown in Listing 1.

1 CREATE FUNCTION fname ([paramlist | *])
2 RETURNS [TABLE(paramlist) | returntype]
3 LANGUAGE [PYTHON | PYTHON _MAP]
4 [{ functioncode } | ’external_file.py’];

Listing 1: MonetDB/Python Syntax.

A MonetDB/Python function can be either a user-defined
scalar, aggregate or a table function. A user-defined scalar
function takes an arbitrary number of columns as input and
returns a single column, and can be used anywhere a normal
SQL function can be used. A user-defined aggregate func-
tion also outputs a single column, but can be used to process
aggregates over several groups when a GROUP BY statement
is present in the query. A user-defined table function can
take an arbitrary number of columns as input and can re-
turn an entire table. User-defined table functions can be
used anywhere a table can be used.

1 CREATE FUNCTION pysqrt(i INTEGER)
2 RETURNS REAL
3 LANGUAGE PYTHON {
4 return numpy.sqrt(i)
5 };
6

7 SELECT pysqrt(i * 2) FROM tbl;

Listing 2: Simple Scalar UDF.

An example of a scalar function that computes the square
root of a set of integers is given in Listing 2. Note that
the function is only called once, and that the variable i is
an array that contains all the integers of the input column.
The output of the function is an array containing the square
root of each of the input values.

Figure 3: Operator Chain for Listing 2.

4.2 Processing Pipeline
MonetDB/Python functions are executed as an operator

in the processing model of the database, as illustrated in
Figure 3. MonetDB/Python functions run in the same pro-
cess and memory space as the database server. As such,
MonetDB/Python functions behave identically to other op-
erators in the operator–at–a–time processing model. Monet-
DB/Python functions are called once with a set of columns
as input, and must return a set of columns as output.

The general pipeline of the MonetDB/Python functions
is as follows: first, we have to convert the input columns
to a set of Python objects. Then, we execute the stored
Python function with the converted columns as input. Fi-
nally, we convert the resulting Python objects back to a
set of database columns which we then hand back to the

database.
Input Conversion. The database and the interpreted

language represent data in a different way. As such, the data
has to be converted from the format used by the database
to a format that works in the interpreted language. Data
conversion can be an expensive operation, especially when
a large amount of data has to be converted. Unfortunately,
we cannot avoid data conversion when writing a user-defined
function in a different language than the core database lan-
guage.

Since MonetDB is a main-memory database, the database
server keeps hot columns loaded in main memory. As Mon-
etDB/Python functions run in the same memory space as
the database server we can directly access the columns that
are loaded in memory. As a result, the only cost we have to
pay to access the data is the cost for converting this data
from the databases’ representation to a representation us-
able in Python.

Internally, columns in a column-store database are very
similar to arrays. They hold a list of elements of a single
type, one element for every row in the table. As such, the
most efficient uncompressed representation for a column is
a tightly packed array where the elements are stored sub-
sequently in memory. By using this representation, each
element of n bytes occupies exactly n bytes.

MonetDB represents the data of individual columns as
tightly packed arrays. In addition to the actual data, the
columns contain metadata, such as the type of the column
and whether or not the column contains null values.

Vector-based languages work with arrays containing a sin-
gle type as well. As such, they have the exact same optimal
data representation as columns in a column-store database.
It should then be no surprise that the data in both NumPy
arrays and R vectors are also internally represented as tightly
packed arrays.

As both the database and the vector-based language share
the same representation for the data, we do not need to
convert the data values. Instead, all we have to convert is a
small amount of metadata before we can use the databases’
columns in Python. As we are not touching the actual data,
the input conversion costs a constant amount of time.

Code Execution. After converting the input columns
to a set of Python objects, the actual user-defined function
is interpreted and executed with the set of Python objects
as input. The user can then use Python to manipulate the
input objects and return a set of output objects.

Aside from the parallel processing, which is described in
Section 4.3, we do not perform any optimization on the
users’ code. That means that the interpreter overhead de-
pends entirely on the code created by the user. If the user
calls a constant amount of vectorized functions, the inter-
preter overhead is constant. As vector-based languages are
only efficient when vectorized functions are used, this is ex-
pected to be a common scenario.

On the other hand, if the user calls functions that oper-
ate on the individual elements of the data, the interpreter
overhead scales with the amount of function calls and can
become a serious bottleneck.

Output Conversion. The database expects a set of
columns as output from the user-defined function. As such,
the same conversion method can be used to convert vectors
back to database columns, but in reverse. Instead of directly
using the data from the database, we take the data from the

returned set of vectors and convert it to a set of columns in
the database. Again, we only need to convert the necessary
metadata, leading to a constant conversion time.

Total Overhead. As MonetDB/Python functions are
not written in the databases’ native language, they incur
overhead for converting between different object representa-
tions. In addition, as Python is an interpreted language, the
functions incur additional interpreter overhead as well.

The conversion overhead only costs a constant amount of
time for each function call as we only convert the metadata,
and this overhead is only incurred once for each time the
function is called in a SQL statement. This overhead would
be significant for transactional workloads, where the func-
tion could be called many times with only a small amount
of data as input. However, as both MonetDB and NumPy
are designed around analytical workloads, we do not expect
transactional workloads. For analytical workloads that op-
erate on large chunks of data, this constant amount of over-
head is not significant.

The magnitude of the interpreter overhead depends en-
tirely code written by the user. If scalar functions are used,
the interpreter overhead can dominate the computation time.
However, when the code only calls a constant amount of
vectorized functions, the interpreter overhead is constant as
well. In this case, the performance of MonetDB/Python
UDFs is comparable to a UDF written in the databases’
native language, as illustrated in Figure 6.

4.3 Parallel Processing
In Section 4.2 we discussed the efficient conversion of data

from the format used by the database to the format used by
Python. The efficient data transfer from the database to
Python significantly improves the performance of functions
for which the data transfer and conversion is the main bot-
tleneck. However, the Python function is still executed by
the regular Python interpreter. As such, the efficient data
conversion does not significantly improve the performance
of functions that are bound by the Python execution time.

Users can manually improve the performance of these func-
tions by executing them in parallel. However, we would pre-
fer to not push the burden of optimization onto the user.
In addition, manual parallelization of user-defined functions
can result in conflicts with the workload management of the
database, which can significantly decrease database through-
put [18]. It would be preferable to have the parallelization
handled automatically by the database server. However,
there are several issues with automatic parallelization in the
database processing pipeline.

1 SELECT MEDIAN(SQRT(i * 2)) FROM tbl;

Listing 3: Chain of SQL operators.

In an operator–at–a–time database, the operators are only
called once. How do we move to a model where data is pro-
cessed in parallel? The solution employed by MonetDB is
to split up the columns into separate chunks and call the
parallelizable operators once for every chunk. The non-
parallelizable operators, such as the median, force the chunks
to be packed together into a single array and are then called
with that entire array as input. This process is shown in
Figure 4.

While the figure displays a table with eight entries split up
into four parts as an example, small columns are normally

not split into separate chunks as the additional multithread-
ing overhead would be larger than the time saved by paral-
lelizing the query. Instead, a heuristic is used to determine
when columns should be split up based on the size of the
columns.

Figure 4: Parallel Operator Chain of Listing 3.

MonetDB/Python functions can be automatically paral-
lelized in this system as well. This alleviates the burden of
parallelization from the user, and leaves the database in full
control of the parallelization. However, not all functions can
be automatically parallelized in this format. A user-defined
function that computes the median, for example, requires
access to all the data in the column.

As such, we require the user to specify whether or not
their UDF can be executed in parallel when creating the
function. When the function cannot be run in parallel, it
will run as a blocking operator and get access to the entire
input columns. This behavior is identical to the median
computation seen in Figure 4.

Parallel computation has an additional effect on the func-
tion call overhead of MonetDB/Python functions as we are
no longer only calling parallel functions once. The functions
are called once per chunk, meaning the function call over-
head is incurred once per chunk.

The amount of chunks created is at most equal to the
amount of virtual cores that the system has, meaning the
function call overhead is O(p) instead of O(1), where p is
the amount of cores. However, as the input columns are
only split up when they have a sufficient size, this additional
overhead will never dominate the actual computation time.

Chaining Operators. Operating on partitions of the
data is a straightforward way of parallelizing operators. How-
ever, as these partitions are arbitrary, the operators can only
be parallelized if they are completely independent and only
operate on individual rows. As such. many operators cannot
be completely parallelized in this fashion.

Often, operators can only be partially computed in par-
allel, and require a final step that merges the results of the
parallel computation to create the final result. An example
of such an operator is the sort operator. The chunks can be
sorted in parallel, but will then have to be merged together
to fully sort the column.

1 SELECT minseq(minmap(i)) FROM tbl;

Listing 4: Parallel MIN using chained operators.

We can parallelize these operators in our system by chain-
ing together operators in the SQL layer. The parallel compo-
nent of the operator can be computed in a mappable func-

tion. The output columns of the parallel components can
then be passed to a blocking function, which merges these
columns together to create the final result. An example of
such a chain being used to compute the minimum value of
a column in parallel is given in Figure 5.

Figure 5: Operator Chain of Listing 4.

User-defined table functions can be chained together in
a similar but more flexible way. These operators can take
entire tables as input and output entire tables of arbitrary
size. Chaining these operators together allows many differ-
ent operations to be executed in parallel.

Parallel Aggregates. The parallel processing we have
implemented operates on sequential segments of the data. If
a column is partitioned into two parts, the first partition will
hold the first half of all the values in the column, and the
second part will hold the second half. The reason we use
this partitioning scheme is the virtual identifiers used by
MonetDB. Any other partitioning requires us to explicitly
keep track of the individual identifiers. By using sequential
partitioning we do not need to materialize the identifiers
of the rows, as the statement that entry i in the column
corresponds to row oidbase + i still holds.

Parallel computation of aggregates is a special case where
we can split up the data into arbitrary partitions without
needing to materialize the row identifiers. This is because
when we compute the aggregates over several groups, the
only information we need is to which group a specific entry
belongs. We do not need to know to which specific row it
belongs. As such, rather than using sequential partitions
we can create one separate partition for each group. We
can then compute the separate aggregates for each group in
parallel by calling the UDF once per group partition.

The problem with this scheme is that the interpreter over-
head is incurred once per group, and the amount of groups
can potentially be very large. In the most extreme case, the
amount of groups is equal to the amount of tuples in the in-
put columns. In this case, we incur the interpreter overhead
once for every tuple.

We can avoid this potentially large interpreter overhead
by allowing the user to compute more than one aggregation
per function call. To do this, the function has to know the
group that each tuple belongs to in the aggregation. We
can pass this to the user-defined function as an additional
input column. The user can then perform the aggregation
over each of the different groups, and return the aggregated
results in order.

These functions can be parallelized in a similar manner.

We can split the data into different sets, where each set
contains all the data of a number of groups and the corre-
sponding group identifiers of each tuple.

5. EVALUATION
In this section we describe a set of experiments that we

have run to test how efficient MonetDB/Python is compared
to alternative in-database processing solutions.

The experiments were run on a machine with two Intel
Xeon (E5-2650 v2) 2.6GHZ CPUs, with a total of 16 physical
and 32 virtual cores and 256 GB RAM. The machine uses
the Fedora 20 OS, with Python version 2.7.5 and NumPy
version v1.10.4. The measured time is the wall-clock time
for the completion of the query.

For each of the benchmarks, we ran the query five times,
which was sufficient for the standard deviation to converge.
The result displayed in the graph is the mean of these mea-
sured values. All benchmarks performed are hot tests. We
first ran the query twice to warm up the database prior to
running the measured runs.

5.1 Systems Measured
MySQL is the most popular open-source relational data-

base system. It is a row-store database that is optimized for
OLTP queries, rather than for analytical queries. MySQL
supports user-defined functions in the languages C /C++ [1].

Postgres is the second most popular open-source rela-
tional database system. It is a row store database that fo-
cuses on being SQL compliant and having a large feature
set. Postgres supports user-defined functions in a wide va-
riety of languages, including C, Python, Java, PHP, Perl, R
and Ruby [3].

SQLite is the most popular embedded database. It is a
row-store database that can run embedded in a large variety
of languages, and is included in Python’s base library as the
sqlite3 package. SQLite supports user-defined functions in
C [2], however, there are wrappers that allow users to create
scalar Python UDFs as well.

MonetDB is the most popular open-source column-store
relational database. It is focused on fast analytical queries.
MonetDB supports user-defined functions in the languages
C and R, in addition to MonetDB/Python.

We want to investigate how efficient the user-defined func-
tions of these different databases are, and how they com-
pare against the performance of built-in functions of the
database. In addition, we want to find out how efficient
MonetDB/Python is compared to these alternatives.

5.2 Modulo Benchmark
In this benchmark, we are mainly interested in how effi-

ciently the data is transported to and from the user-defined
functions. As we have seen in Figure 1, this is a crucial
bottleneck for user-defined functions.

We will compute the modulo of a set of integers in each of
the databases. The modulo is a good fit for this benchmark
for several reasons: unlike floating point operations such as
the sqrt, there is no estimation involved. When estimation
is involved, the comparison is often not fair because a sys-
tem can estimate to certain degrees of precision. Naturally,
more accurate estimations are more expensive. However,
in a benchmark we would only measure the amount of time
elapsed, thus the more accurate estimation would be unfairly
penalized.

500

550

600

650

700

547

Modulo (1GB)

90
100
110
120
130
140
150

T
o
ta

l
T
im

e
 (

s)

94.6

119
127

M
o
n
e
t/

C
 (

8
T
)

M
o
n
e
t/

P
y
th

o
n
 (

8
T
)

M
o
n
e
t

N
a
ti

v
e
 (

8
T
)

M
o
n
e
t/

C
 (

1
T
)

M
o
n
e
t/

P
y
th

o
n
 (

1
T
)

M
o
n
e
t

N
a
ti

v
e
 (

1
T
)

S
Q

Li
te

 N
a
ti

v
e

P
o
st

g
re

s
C

 U
D

F

P
o
st

g
re

s
N

a
ti

v
e

S
Q

Li
te

/P
y
th

o
n

M
y
S
Q

L
C

 U
D

F

M
y
S
Q

L
N

a
ti

v
e

P
o
st

g
re

s
P
L/

P
y
th

o
n

0
5

10
15
20
25
30
35
40

0.2 0.2 0.3 1.1 1.1 1.7

29.1 30.1 31.4

Figure 6: Modulo computation of 1GB of integers.

Similarly, when performing a modulo operation, we know
that there is a specific bound on the result. The result of x
% n will never be bigger than n. This means that there is
no need to promote integral values. If we were to compute
multiplication, for example, the database could be promot-
ing INT types to LONGINT types to reduce the risk of integer
overflows. This naturally takes more time, and could make
benchmark comparisons involving multiplication unfair.

In addition, the modulo operation is a simple scalar opera-
tion that can be easily implemented in both C and NumPy
by using the modulo operator. This means that we will
not be benchmarking different implementations of the same
function, but we will be benchmarking the efficiency of the
database and data flow around the function. As it is a sim-
ple scalar operation, it also fits naturally into tuple-at-a-time
databases. We can also trivially compute the modulo oper-
ation in parallel, allowing us to benchmark the efficiency of
our parallel execution model.

Setup. In this benchmark, we computed modulo 100 of
1GB of randomly generated 32-bit integers. The values of
the integers are uniformly generated between the values 0
and 231. To ensure a fair comparison, every run uses the
same set of values. For each of the mentioned databases,
we have implemented user-defined functions in a subset of
the supported UDF languages to compute the modulo. In
addition, we have computed the modulo using the built-
in modulo function of each database. For MonetDB, we
have measured both the multi-threaded computation (with
8 threads) and the single-threaded computation.

Results. The results of the benchmark are shown in Fig-
ure 6. As we can see, MonetDB provides the fastest com-
putation of the modulo. This is surprising, considering the
modulo function is well suited for tuple-at-a-time processing.
In addition, the table we used had no unused columns. It
only had a single column containing the set of integers, thus
this is essentially a best-case scenario for the tuple-at-a-time

databases.
The reason for this performance deficit is that even when

computing scalar functions, the function call overhead for
every individual row in the data set is very expensive when
working with a large amount of rows. When the data fits
in memory, the operator-at-a-time processing of MonetDB
provides superior performance, even though access to the
entire column is not necessary for the actual operators.

We note that in all of the databases our user-defined func-
tions in C are faster than the built-in modulo operator. This
is because our user-defined functions skip sanity checks that
the built-in operators perform, such as checking for potential
null values that could be in the database, and instead di-
rectly compute the modulo. This allows our user-defined
functions to be faster than the built-in operators on all
database systems.

When looking at the Python UDFs, we immediately note
the additional interpreter overhead that is incurred in the
tuple-at-a-time databases. Both SQLite/Python and
PL/Python have poor performance compared to the native
modulo operator in their respective database. In these ar-
chitectures, the user-defined functions are called once per
row, which incurs a severe performance penalty. We note
that PL/Python is significantly slower than SQLite/Python.
This is because SQLite/Python is a very thin wrapper around
C UDFs that minimize overhead, while PL/Python offers
more complex functionality which cause these functions to
incur significantly more overhead.

By contrast, MonetDB/Python is just as fast as the UDF
written in C in MonetDB. Because of our vectorized ap-
proach, the conversion and interpreter overhead that Mon-
etDB/Python UDFs incur is minimal. As such, they achieve
the same performance as UDFs written in the databases’
native language, but without requiring the user to have in-
depth knowledge of the database kernel and without needing
to compile and link the function to the database.

6. RELATED WORK
There is a large body of related work on user-defined func-

tions, both in the research field and in implementations by
database vendors. In this section, we will present the rel-
evant related work in both fields, and compare the related
work against MonetDB/Python.

6.1 Research
Research on user-defined functions started long before they

were introduced into the SQL standard. The work by Lin-
nemann et al. [14] focuses on the necessity of user-defined
functions and user-defined types in databases, noting that
the SQL standard lacks many necessary functions such as
the square root function. To solve this issue, they suggest
adding user-defined functions, so the user can add any re-
quired functions themselves. They describe their own im-
plementation of user-defined functions in the compiled PAS-
CAL language, noting that the compiled language is nearly
as efficient as built-in functions, with the only overhead be-
ing the conversion costs.

They note that executing UDFs in a low-level compiled
language in the same address space as the database server is
potentially dangerous. Mistakes made by the user in the
UDF can corrupt the data or crash the database server.
They propose two separate solutions for this issue; the first
is executing the user-defined function in a separate address
space. This prevents the user-defined function from access-
ing the memory of the database server, although this will
increase transfer costs of the data.

The second solution is allowing users to create user-defined
functions in an interpreted language, rather than a low-level
compiled language, as interpreted languages do not have di-
rect access to the memory of the database server. This is
exactly what MonetDB/Python UDFs accomplish. By run-
ning in a scripting language, they can safely run in the same
address space as the database and avoid unnecessary trans-
fer overhead.

6.1.1 In-Database Analytics
In-database processing and analytics have seen a big surge

in popularity recently, as data analytics has become more
and more crucial to many businesses. As such, a significant
body of recent work focuses on efficient in-database analytics
using user-defined functions.

The work by Chen et al. [5, 6] takes an in-depth look at
user-defined functions in tuple-at-a-time processing databases.
They note that while user-defined functions are a very useful
tool for performing in-database analysis without transferring
data to an external application, existing implementations
have several limitations that make them difficult to use for
data analysis. They note that existing user-defined func-
tions in C are either very inefficient compared to built-in
functions, as in SQL Server, or require extensive knowledge
of the internal data structures and memory management of
the database to create, as in Postgres, which prevents most
users from using them effectively. MonetDB/Python UDFs
do not have this issue, as they do not require the user to
have in-depth knowledge of the database internals.

They also identify issues with user-defined functions in
popular databases that restrict their usage for modeling com-
plex algorithms. While user-defined scalar functions and
user-defined aggregate functions cannot return a set, user-
defined table functions cannot take a table as input in the

database systems they used. The same observation is made
by Jaedicke et al. [11]. The result of this is that it is not
possible to chain multiple user-defined functions together to
model complex operations, that each take a relation as input
and output another relation.

To alleviate this issue, both Chen et al. [5] and Jaedicke et
al. [11] propose a new set of user-defined functions that can
take a relation as input and produce a relation as output.
This is exactly what MonetDB/Python table functions are
capable of. They can take an arbitrary number of columns
as input and produce an arbitrary number of columns as
output, and can be chained together to model complex re-
lations.

The work by Sundlöf [16] explores the difference between
performing computations in-database with user-defined func-
tions and performing the computations in a separate applica-
tion, transferring the data to the application using an ODBC
connection. Various benchmarks were performed, including
matrix multiplication, singular value decomposition and in-
cremental matrix factorization. They were performed in the
column-store database Sybase IQ in the language C++. The
results of his experiments showed that user-defined functions
were up to thirty times as fast for computations in which
data transfer was the main bottleneck.

Sundlöf noted that one of the difficulties in performing
matrix operations using user-defined functions was that all
the input columns must be specified at compile time. As
a result it was not possible to make user-defined functions
for generic matrix operations, but instead they had to ei-
ther create a separate set of user-defined functions for every
possible amount of columns, or change the way matrices are
stored in the database to a triplet format (row number, col-
umn number, value).

6.1.2 Processing of User-Defined Functions
As user-defined functions form such a central role in in-

database processing, finding ways to process them more ef-
ficiently is an important objective. However, as the user-
defined functions are entirely implemented by the user, it is
difficult to optimize them. Nevertheless, there has been a
significant effort to optimize the processing of user-defined
functions.

6.1.3 Parallel Execution of User-Defined Functions
Databases can hold very large data sets, and a key ele-

ment in efficiently processing these data sets is processing
them in parallel, either on multiple cores or on a cluster
of multiple machines. Since user-defined functions can be
very expensive, processing them in parallel can significantly
boost the performance of in-database analytics. However,
as user-defined functions are written by the user themselves,
automatically processing them in parallel is challenging.

The work by Jaedicke et al. [10] explores how user-defined
aggregate functions can be processed in parallel. They re-
quire the user to specify two separate functions, a local ag-
gregation function and a global aggregation function. The
local aggregation function is executed in parallel on different
partitions of the data. The results of the local aggregation
functions are then gathered and passed to the global aggre-
gation function, which returns the actual aggregation result.

They propose a system that allows the user to define how
the data is partitioned and spread to the local aggregation
functions. More strict partitions are more expensive to cre-

ate, but allow for a wider variety of operations to be executed
in parallel.

6.2 Systems
In this section, we will present an overview of systems

that have implemented user-defined functions. We will take
an in-depth look at the types of user-defined functions these
systems support, and how they differ from MonetDB/Python.

6.2.1 Aster nCluster Database
The Aster nCluster Database is a commercial database

optimized for data warehousing and analytics over a large
number of machines. It offers support for in-database pro-
cessing through SQL/MapReduce functions [7]. These func-
tions support a wide set of languages, including compiled
languages (C++, C and Java) and scripting languages (R,
Python and Ruby).

SQL/MR functions are parallelizable. As in the work by
Jaedicke et al. [10], they allow users to define a partition over
the data. They then run the SQL/MapReduce functions in
parallel over the specified set of partitions, either over a
cluster of machines or over a set of CPU cores.

SQL/MR functions support polymorphism. Instead of
specifying the input and output types when the function
is created, the user must provide a constructor for the user-
defined function. The constructor takes as input a contract
that contains the input columns of the function. The con-
structor must then check if these input columns are valid,
and provide a set of output columns. During query plan-
ning, this constructor is called to determine the input/out-
put columns of the SQL/MR function, and a potential error
is thrown if the input/output columns do not line up cor-
rectly in the query flow.

The primary difference between SQL/MR functions and
MonetDB/Python functions is the processing model around
which they are designed. SQL/MR functions operate on
individual tuples in a tuple-at-a-time fashion. The user ob-
tains the next row by calling the advanceToNextRow func-
tion, and outputs a row using the emitRow function.

7. APPLICABILITY TO OTHER SYSTEMS
In the paper, we have described how we integrated user-

defined functions in a vector-based language in the operator-
at-a-time processing model. In this section, we will discuss
how functions in vector-based languages could be efficiently
integrated into different processing models.

Tuple–at–a–Time. We have already determined that
the straightforward implementation of vector-based language
UDFs in this processing model is very inefficient. When a
vector-based language is used to compute scalar values, the
interpreter overhead dominates the actual computation cost.
Instead, the UDF should receive a large chunk of the input
to operate on so the interpreter overhead is negligible com-
pared to the actual computation cost.

In the tuple-at-a-time processing model, accessing a chunk
of the input at the same time requires us to iterate over the
tuples one by one. Then, after every value has been com-
puted, we copy that value to a separate location in memory.
After gathering a set of values, we can use the accumulated
array of values as input values for a vectorized UDF.

While gathering the data requires additional work, this
added overhead is significantly lower than the interpreter
overhead incurred when operating on scalar values in a vector-

0 100 200 300 400 500 600 700

V
e
ct

o
ri

ze
d

S
ca

la
r

546.8s

133.1s

Figure 7: PL/Python Vectorized vs Non-Vectorized Modulo
Operator.

based language. This is especially true when a lot of different
operations are performed on the data in the UDF.

We have emulated this algorithm in Postgres by loading
the data of a single column into PL/Python using a database
access function, and then calling the vector based operator
on the entire column at once. The results are shown in
Figure 7. We can see that this method is significantly more
efficient than performing many scalar operations even when
we perform only a single operation (modulo).

However, this method is still significantly slower than Mon-
etDB/Python because of the added overhead for copying and
moving the data. As such, it is not possible for vector-based
languages to perform as efficiently as native database func-
tions in this processing model.

Pipeline Processing faces the same issues as tuple-at-a-
time processing in this scenario. Pipeline processing avoids
function call overhead by generating code. The only way to
avoid this function call overhead for UDFs written in vector-
based languages would be to translate the code written in
the vector-based language to the databases’ native language.
That translated code can then be inlined into the generated
code, which would avoid function call and interpreter over-
head. While this might be possible for simple functions, it
is not feasible for arbitrary functions.

Vectorized Processing is similar to our parallel pro-
cessing model. It operates on chunks of the data. Parallel
UDFs fit directly into this processing model in a similar
fashion. They would operate on one chunk at a time, and
incur the interpreter overhead once per chunk. The magni-
tude of the interpreter overhead depends entirely on the size
of the chunks. While MonetDB/Python always operates on
chunks with a high cardinality, this is not necessarily true in
databases with vectorized processing. If the chunks sizes are
too small, then the interpreter overhead will still dominate
the processing time.

Blocking UDFs in this processing model have the same
issues as UDFs in the tuple-at-a-time processing model. The
UDF needs access to all the input data at once, but the
database only computes the data in chunks. As such, we
need to gather the data from each of the separate chunks
before calling the blocking function. In the operator-at-a-
time processing model, this is only necessary if the blocking
function is executed after a paralellized function.

Compressed Data. Certain databases work with com-
pressed data internally to save storage space and memory
bandwidth. Especially column-oriented database systems

can benefit greatly from compression. When the input columns
to a vector-based UDF are compressed, they have to be en-
tirely decompressed before being passed to the vector-based
function, as the vector-based language needs access to the
entire input columns.

8. CONCLUSION
In this paper, we have introduced the vectorized MonetD-

B/Python UDFs. As both MonetDB and the vector-based
language Python share the same efficient data representa-
tion, we can convert the data between the two separate
formats in constant time, as only the metadata has to be
converted. In addition, as MonetDB operates on data in
an operator-at-a-time fashion, no additional overhead is in-
curred for executing the UDFs in a vector-based fashion.

We have shown that MonetDB/Python UDFs are as ef-
ficient as UDFs written in the databases’ native language,
but without any of the downsides. MonetDB/Python UDFs
can be created without requiring in-depth knowledge of the
database kernel, and without having to compile and link the
functions to the database server.

In addition, MonetDB/Python functions support auto-
matic parallelization of functions over the cores of a single
node, allowing for highly efficient computation. MonetD-
B/Python functions can be nested together to create rela-
tional chains, and parallel MonetDB/Python functions can
be nested to perform Map/Reduce type jobs. All these fac-
tors make MonetDB/Python functions highly suitable for
efficient in-database analysis.

8.1 Future Work
While MonetDB/Python functions are already very us-

able for efficient in-database analytics, there are still im-
provements that can be made to the system.

Polymorphism. Currently, MonetDB/Python functions
are only partially polymorphic. The user can specify that
the function accepts an arbitrary number of arguments, how-
ever, the return types are still fixed and must be specified
when the function is created. Allowing the user to create
complete polymorphic functions would increase the flexibil-
ity of MonetDB/Python functions.

The problem with polymorphic return types is that the
return types of the function must be known while construct-
ing the query plan in the current execution engine. Thus we
cannot execute the function and look at the returned values
to determine the column types. The solution proposed by
Friedman et al. [7] is to allow the user to create a function
that specifies the output columns of the function based on
the types of input columns. This function is then called
while constructing the query plan to determine the output
types of the function.

This allows the user to create functions whose output
columns depend on the number of input columns and the
types of those columns. However, it does not allow the user
to vary the output columns based on the actual data within
the input columns. Consider, for example, a function that
takes as input a set of JSON encoded objects, and converts
these objects to a set of database columns. The amount of
output columns depends on the actual data within the JSON
encoded objects, and not on the amount or type of the in-
put columns, thus these types of polymorphic user-defined
functions are not possible using the proposed solution.

The ideal solution would be to determine the amount of

columns during query execution, however, this provides sev-
eral challenges as the query plan must be adapted to the
amount of columns returned by the function, and must thus
be dynamically modified during execution.

Data Partitioning. MonetDB/Python supports parallel
execution of user-defined functions. It does so by partition-
ing the input columns and executing the function on each of
the partitions. Currently, the partitioning simply splits the
input columns into n equally sized pieces. This is the most
efficient way of splitting the columns, but it limits the paral-
lelizability of user-defined functions. Functions that operate
only on the individual rows, such as word count, can be
parallelized using this partitioning.

However, as noted by Jaedicke et al. [10], certain func-
tions cannot be efficiently executed in parallel on arbitrary
partitions, but can be efficiently computed in parallel if there
are certain restrictions on the partitioning scheme. Allow-
ing the user to specify a specific partitioning scheme would
increase the flexibility of the parallelization.

There are performance implications in arbitrary partition-
ing in a column-store. Normally, the identifiers of every row
are not explicitly stored, as shown in Figure 2a. The cur-
rent partitioning scheme does not rearrange the values in
the columns, which allows these identifiers to remain vir-
tual. However, if we rearrange the values in the columns
to match a user-defined partitioning scheme, we would need
to explicitly store the row identifiers, resulting in significant
additional overhead. This is avoided by the special parti-
tioning used for computing parallel aggregates, because we
do not need to know the individual tuple identifiers of each
of the values as we are accumulating the actual values, thus
we only need to know the group that the value belongs to.

Still, parallelization could lead to big improvements in ex-
ecution time of CPU-bound functions. It would be inter-
esting to see how big the set of functions is that cannot be
parallelized over arbitrary partitions, but can be parallelized
over restricted partitions. It would also be interesting to see
if it would be worth the performance hit of creating these
restricted partitions over the data so we can compute these
functions in parallel.

Distributed Execution. Currently, MonetDB/Python
can only be parallelized over the cores of a single machine.
While this is suitable for a lot of use cases, certain data sets
cannot fit on a single node and must be scaled to a cluster of
machines. It would be interesting to scale MonetDB/Python
functions to work across a cluster of machines, and examine
the performance challenges in a parallel database environ-
ment.

Script Optimization. In this paper we have focused
mainly on optimizing the dataflow around user-defined func-
tions. We have seen in Figure 6 that this dramatically speeds
up functions for which transportation of data is the main
bottleneck. However, when the computation time dominates
the transportation time this optimization will not provide a
significant speedup. We have provided the ability to exe-
cute functions in parallel, which can still provide significant
speedups to these functions. However, we still treat the user-
defined functions as black boxes. Additional speedups could
be achieved by looking into the user-defined functions and
optimizing the code within the functions.

Cardinality Estimation. MonetDB uses heuristics based
on table size when creating the query plan to determine
how the columns should be partitioned for parallelization, as

partitioning small tables significantly degrades performance.
However, when the table is generated by a table-producing
function, this table could potentially have any size. An inter-
esting research direction could be estimating the cardinality
of these table-producing functions.

Code Translation. When creating MonetDB/Python,
we have tried to make it as easy as possible for data scientists
to make and use user-defined functions. However, they still
have to write user-defined functions and use SQL queries to
use them if they want to execute their code in the database.
They would prefer to just write simple Python or R scripts
and not have to deal with database interaction.

An interesting research direction could be analyzing these
scripts, and automatically shipping parts of the script to
be executed on the database as user-defined functions. This
way, data scientists do not have to interact with the database
at all, while still getting the benefits of user-defined func-
tions.

Acknowledgments
This work was funded by the Netherlands Organisation for
Scientific Research (NWO), project“Process mining for multi-
objective online control” (Raasveldt) and “Capturing the
Laws of Data Nature” (Mühleisen). We thank Sjoerd Mul-
lender and Niels Nes of the MonetDB team for their help
with the implementation.

9. REFERENCES
[1] Adding a new user-defined function. In MySQL User

Manual.

[2] Create or redefine sql functions. In SQLite User
Manual.

[3] Procedural languages. In PostgreSQL User Manual.

[4] P. Boncz, M. Zukowski, and N. Nes. Monetdb/x100:
Hyper-pipelining query execution. In In CIDR, 2005.

[5] Q. Chen, M. Hsu, and R. Liu. Extend udf technology
for integrated analytics. In T. Pedersen, M. Mohania,
and A. Tjoa, editors, Data Warehousing and
Knowledge Discovery, volume 5691 of Lecture Notes in
Computer Science, pages 256–270. Springer Berlin
Heidelberg, 2009.

[6] Q. Chen, M. Hsu, R. Liu, and W. Wang. Scaling-up
and speeding-up video analytics inside database
engine. In S. Bhowmick, J. KÃijng, and R. Wagner,
editors, Database and Expert Systems Applications,
volume 5690 of Lecture Notes in Computer Science,
pages 244–254. Springer Berlin Heidelberg, 2009.

[7] E. Friedman, P. Pawlowski, and J. Cieslewicz.
Sql/mapreduce: A practical approach to
self-describing, polymorphic, and parallelizable
user-defined functions. Proc. VLDB Endow.,
2(2):1402–1413, Aug. 2009.

[8] S. Idreos, F. Groffen, N. Nes, S. Manegold,
S. Mullender, and M. Kersten. Monetdb: Two decades
of research in column-oriented database architectures.
IEEE Data Eng. Bull, page 2012.

[9] ISO. Iso/iec 9075:1992, database language sql.
Technical report, July 1992.

[10] M. Jaedicke and B. Mitschang. On parallel processing
of aggregate and scalar functions in object-relational
dbms. In Proceedings of the 1998 ACM SIGMOD
International Conference on Management of Data,

SIGMOD ’98, pages 379–389, New York, NY, USA,
1998. ACM.

[11] M. Jaedicke and B. Mitschang. User-defined table
operators: Enhancing extensibility for ordbms. In
M. P. Atkinson, M. E. Orlowska, P. Valduriez, S. B.
Zdonik, and M. L. Brodie, editors, VLDB’99,
Proceedings of 25th International Conference on Very
Large Data Bases, September 7-10, 1999, Edinburgh,
Scotland, UK, pages 494–505. Morgan Kaufmann,
1999.

[12] R. M. John King. 2015 data science salary survey.
Sept. 2015.

[13] A. Lamb, M. Fuller, R. Varadarajan, N. Tran,
B. Vandiver, L. Doshi, and C. Bear. The vertica
analytic database: C-store 7 years later. Proc. VLDB
Endow., 5(12):1790–1801, Aug. 2012.

[14] V. Linnemann, K. Küspert, P. Dadam, P. Pistor,
R. Erbe, A. Kemper, N. Südkamp, G. Walch, and
M. Wallrath. Design and implementation of an
extensible database management system supporting
user defined data types and functions. In Proceedings
of the 14th International Conference on Very Large
Data Bases, VLDB ’88, pages 294–305, San Francisco,
CA, USA, 1988. Morgan Kaufmann Publishers Inc.

[15] T. Neumann. Efficiently compiling efficient query
plans for modern hardware. Proc. VLDB Endow.,
4(9):539–550, June 2011.

[16] C.-F. Sundlöf. In-database computations. Master’s
thesis, Royal Institute of Technology, Sweden, 10 2010.

[17] H. Wang and C. Zaniolo. User-defined aggregates in
database languages. In R. Connor and A. Mendelzon,
editors, Research Issues in Structured and
Semistructured Database Programming, volume 1949
of Lecture Notes in Computer Science, pages 43–60.
Springer Berlin Heidelberg, 2000.

[18] F. Wolf, I. Psaroudakis, N. May, A. Ailamaki, and
K.-U. Sattler. Extending database task schedulers for
multi-threaded application code. In Proceedings of the
27th International Conference on Scientific and
Statistical Database Management, SSDBM ’15, pages
25:1–25:12, New York, NY, USA, 2015. ACM.

